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Foreword

This collection of technical reports addresses
the following topics: the response of a linear- FM
correlator for multiple signals, where the reference and
signal amplitude modulations may be mismatched; the
performance of two different types of normalizers subject
to widely different interferences, such as Weibull,
log-normal, Gaussian, and for received signals that have
undergone a very general model of fading; the performance
of an OR-ing device that must also indicate the correct
signal channel of an incoherent combiner of separated
signal components; a new procedure for accurate, efficient
evaluation of Bessel transforms, which is an extension of
Filon's method for Fourier transforms; a highly efficient
procedure for evaluation of polynomials and exponentials
of polynomials for equi-spaced arguments along an
arbitrary line in the complex plane; and the estimation of
signal and noise powers of a signal that is
amplitude- modulated in a known way.

Some of the material presented here is based
heavily on the author's earlier work, which can be found in
the following volumes in addition to the referenced
technical reports:

Performance of Detection and Communication Systems,
NUSC Scientific and Engineering Studies, 1974;

Spectral Estimation, NUSC Scientific and Engineering
Studies, 1977;

Coherence Estimation, NUSC Scientific and
Engineering Studies, 1979;

Receiver Performance Evaluation and Spectral
Analysis, NUSC Scientific and Engineering Studies,
1981;

Signal Processing Studies, NUSC Scientific and
Engineering Studies, 1983;

Signal Processing Studies, NUSC Scientific and
Engineering Studies, 1985;

Signal Processing Studies, NUSC Scientific and
Engineering Studies, 1986.

Dr. William A. Von Winkle
Associate Technical Director

for Technology
NAVAL UNDERWATER SYSTEMS CENTER

Compiled 1987
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Technical Report 7543
4 October 1985

Linear FM Correlator Response for
Multiple Targets; Mismatched Reference
and Signal Amplitude Modulations

A. H. Nuttall
ABSTRACT

The response of a linear- FM correlator to a
target with multiple point-highlights is derived in closed
form. The transmitted signal and reference waveform
amplitude modulations need not be equal in shape or
length, nor do the highlight strengths, time delays, and
frequency shifts have to be matched by the reference
parameters. The fundamental calculation required is the
cross- ambiguity function between two waveforms of
different shapes and lengths, each belonging to the
general class composed of a sum of cosines. In particular,
this class includes the rectangular, Hanning, and Hamming
functions, as well as a variety of optimum cases.

The effect of mainlobe broadening for frequency
mismatch, as well as the possibility of supressing the
sidelobes of the receiving filter response by deliberate
mismatching, is displayed for a variety of cases. The
accompanying loss in detectability is also investigated,
being of the order of .5 dB in signal--to-noise ratio, if the
reference waveform length is selected appropriately.
Programs are furnished that allow a user to consider his
own multiple target structure and reference waveforms
with arbitrary time-bandwidth product.

Approved for public release; distribution is unlimited.
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LINEAR-FM CORRELAIOR RESPONSE FOR MULlIPLE lARGETS;

MISMATCHED REFERENCE AND SIGNAL AMPLITUDE MODULAIONS

INTRODUCTION

For target ranging and Doppler estimation on potential targets, a

narrowband linear-FM (frequency modulation) waveform with rectangular

amplitude modulation is often transmitted. Receiver processing for this

signal is relatively simple, consisting of cross-correlation of the received

waveform with a suitably time delayed (and possibly frequency shifted)

replica of a linear-FM reference, generally utilizing the same rectangular

amplitude modulation.

However, the receiver response can be cluttered by significant

sidelobes for mismatched reference time delay guesses, due to a poor

cross ambiguity function between the transmitted signal and the reference

signal. Furthermore, significant broadening of the peak response can occur

for mismatched frequency shifts.

Since the received waveform, consisting of multiple highlight echoes

and noise, does not have to be necess,.rily processed with the matched

filter, the possibility exists of suppressing sidelobes by using

deliberately mismatched references. For recorded data that are to be
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subjected to close scrutiny, a variety of situations can be investigated,

and the maximum amount of information gleaned from a limited amount of data.

In order to determine how worthwhile this prospect can be, it is

necessary to evaluate the noise-free responses of several candidate

transmitted signals and local references. The class of waveforms should

allow for different lengths as well as different shapes, including

rectangular, Hanning, and Hamming functions as particular examples. Here we

will derive equations and present programs for determining linear-FM

correlator responses for signals with arbitrary

time-bandwidth product.

reference time delay and frequency shift,

number of targets,

target strengths,

target phases,

target time delays,

target frequency shifts, and

mismatched reference (envelope and duration).

2
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As a necessary by-product of the investigation, the cross ambiguity

between two different waveforms is derived for arbitrary

time delay

frequency shift,

time durations, and

amplitude shapes,

in the class of waveforms consisting of a sum of finite--duration cosines.

3/4
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CROSS-CORRELAIOR OUTPUl

GENERAL RESULT

ihe transmitted signal is presumed to be narrowband, with a dependence

on time t of the form

s(t) exp(i2f ct) , (1)

where s(t) is the complex envelope and f is the carrier frequency. More

precisely, (1) is the analytic signal corresponding to the transmitted

waveform. The received (analytic) waveform after target reflection, but

exclusive of noise, is given by

w(t) = I Ad s(t - td) exp[i21r(f c + fd)(t - td)] (2)

where

Ad = amplitude (complex) 1 dth

td = time delay( target
highlight.

fd = frequency shift (3)

That is, each highlight is modeled as a point target with some strength,

phase shift, range, and Doppler set of values.

5
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ihe reference waveform to be used at the receiver has the form

r(t) = q(t - tr) exp[i 21(fc I fr)(t - tr) +- ir (4)

where

q(t) complex envelope

tr = time delay of reference. (5)

f r frequency shiftr

e = phaser

lhe reference complex envelope q(t) need not match transmitted signal

s(t), nor need any of the reference parameters tr, f r' er be identical

to those in the received waveform w(t) in (2) and (3).

lhe signal output of the cross-correlator in the receiver is given by*

C(t rvfrd = f dt w(t) r*(t) (6)

For matched filter processing at the receiver, the analytic signal of the

filter output is given by (6), where tr represents the time variable; the

physical envelope is the magnitude of (6).

*Integrals without limits are over the range of nonzero integrand.

6
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Correlator output c is obtained by substituting (2) and (4) in (6); the

derivation is carried in appendix A, with the result for the complex

envelope of (6) being given by (A-5) as

C(tr'fr) ; Bd Xsq(tr- td- fr - fd )  (7)
d

where Bd is a complex phasor with the same strength as the d-th path

amplitude Ad and a uniform distribution in angle, while

Xsq (t,v) - f dt s(t) q*(t -) exp(-i2wvt) (8)

is the cross-ambiguity function of waveforms s(t) and q(t), at time delay t

and frequency shift v. An alternative symmetric version of the cross-

ambiguity function is defined in appendix B and some properties are

discussed. The correlator output physical envelope is given by the

magnitude of (7).

LINEAR-FM

When the transmitted signal s and local reference q employ linear-FM,

we can express them according to

s(t) s(t) exp(iwOt 2 )

q(t) _g(t) exp(ift 2 ) , (9)

where s(t) and g(t) are low-pass amplitude modulations centered at time

t 0. lhe instantaneous frequency of both functions in (9) is Bt; if the
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signal duration is T seconds and the frequency sweeps across a bandwidth of

W Hz in that time, then we have

W frequency sweep (10)
+ I = + signal duration (

where the i- corresponds to an up sweep and the - to a down sweep.

The noise-free complex envelope of the correlator output (7) is then

given in (A-12) by

c(trf f Bd exp[-ir(fr - fd)(tr - td)) *
d

Sq(tr td' fr - fd - tr - td))

where Xsq is the symmetric cross-ambiguity function of the low-pass

amplitude modulations.

At this point, it is convenient to define a normalized time variable

and a normalized frequency variable according to

TfW. (12)

the most important range of these new dimensionless variables x,y is -1,11.

Combining (10)-(12), we obtain

C(t r,f ) Bd exp[-iwlW(x r - X d)(y r - yd)]*
d

X ns[T(xr - xd). W(yr -- ydT(xr - xd))] (13)

8 m mum |
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for the linear-FM correlator complex envelope response. The physical

envelope is IC(tr'fr) I versus reference time variable tr. A multiple-

highlight target is characterized by specification of

strength parameter Bd

normalized time delay xd  for each path d. (14)

normalized frequency shift yd J

For a specified normalized local reference frequency shift yr' we will

plot the magnitude of response (13) versus normalized time parameter x r in

the -l,-l range.

9/10
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EXAMPLES OF LOW--PASS MODULATIONS

In this section, we present results for three common types of low-pass

modulations s(t) and g(t) in (9). Numerical evaluation and graphical

results are deferred to the next section.

RECTANGULAR ENVELOPES

Let both low-pass modulations be rectangular and of equal duration:

for 2 2 (15)

This corresponds to linear-FM that is abruptly turned on, held at constant

amplitude, and abruptly turned off, at the transmitter as well as in the

receiver processor.

The symmetric cross-ambiguity function is (see appendix B)

sin [iv(T - ITJ)I for -T <r< 1 (16)

irvl

and zero otherwise. In anticipation of its use in (13), we also have

Xs (Ix, Wy) sin [TWv(l - IxI)l for lxi < 1 (17)

sq WTWy

11
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and zero otherwise, which is seen to depend only on the time-bandwidth

product TW, and not on these variables separately. This is one reason for

introducing normalized variables in (12); it allows response (13) to depend

only on TW and the normalized parameters listed in (14). ihis property is

true only for narrowband waveforms, that is, fc >> W.

A program for the calculation of response (13) coupled with (17) is

furnished in appendix C under the title Rectangular Envelopes. Inputs

required of the user are collected at the top in lines 20-80. lhe target

amplitudes and phases to be input in lines 50 and 60, respectively, are the

magnitudes and arguments of the complex numbers {BdI in (13). The

normalized reference frequency shift yr f r/W in line 20 is kept

constant for a single plot, while the reference time delay x r t /1 is

varied over -1,I1 in loop 180-340. The magnitude, IC(tr,fr)j, is

plotted on a linear ordinate.

Each term in (13) peaks when the second argument of the cross-ambiguity

function is zero; see (17). Thus, each term peaks at reference time

X r -xd i(yr-Yd) , which depends on the particular highlight delay

and shift values xdY d and on the local reference frequency shift Yr"

However, the peak amplitude in (17) is scaled down to the value l-Ixr-xdJ

= 1 lyr-Ydi, which depends on the mismatch between the reference

frequency shift and the particular highlight frequency shift.

12
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Furthermore, the peak broadens for nonzero frequency mismatch. lo see

this, let

Ax : Xr xd,  Ay = Yr Yd (18)

in (13) to obtain

wTW(ayA x)

by use of (17). Now in the neighborhood of the peak at AX  t A Y let

A - A i-c; then
x - y

wTW (4 

"i iTW( for small j I. (20)

The sharpness of this function of c in the neighborhood of the peek at c-O

is proportional to [TW(1-J A,)]-. Thus if JAYI .5, that is,

KYr-YdI= .5, or Ifr-fdl- .5 W, (21)

the width of the peak is approximately doubled (in addition to the peak

amplitude being halved, according to (20)).

13
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GAUSSIAN ENVELOPES

In this example, both low-pass modulations have identical Gaussian

envelopes:

5(t) = q(t) = exp(-rt 2/T ) for all t. (22)

The effective time duration T is defined such that

I

s(t i) = exp(-ir/4) = .456, versus s(O) = 1. (23)

The spectrum of this waveform is (see (B-2))

S(f) =1 exp(-irl 2f 2); (24)

thus the effective spectral width is 1/1, since

S (t ) = I exp(-v/4) = .456 S(O), (25)

which is the analog to (23).

ihe symmetric cross-ambiguity function is easily determined from (B-6)

as

xsg(tv) exp[ 2 T for all -v. (26)

Then, as needed for (13),

Z4 (Tx,Wy) for all xy (27)

14
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A program for the calculation of correlator response (13), by means of

relation (27), is given in appendix C, under the title Gaussian Envelopes.

In particular, using definition (18) again, the significant term

required in (13) is

X__q(TAx , W(Ay 2 AX)

T f_, )ii2) ( - T2W21 A2  T 2W2

7 exp 2 + 2 y 1TT W 2  (28)

Now for fixed frequency mismatch ay, i.e., fixed fr'-fd, the shape of

(28) is totally independent of the value of A . The peak value is reducedY

by the factor

ex [ y (29)

and the location of the peak is delayed to

T22

Ax tA - TW (30)
x 1-T 2W2

but there is no broadening of the response versus Ax' regardless of the

value of A . This is in distinction to the case of rectangular envelopesY

in the previous subsection; it is due to the rounded shoulders of the

Gaussian envelope (22), in contrast to the rectangular case in (15).

If we combine (9), (10), and (22) for this example, we have, for the

complex envelope of transmitted signal and reference,

15



IR 7543

s(t) r q(t) : exp F ± iir - t 2. (31)

L T 2 T

The instantaneous frequency is t yt, which takes on values tW/2 at

t = tl/2; this is consistent with the results in (23)-(25).

ARBIIRARY ENVELOPES AND DURAIION

The low-pass modulation of the transmitted signal is now

s(t) = 2ak exp(i2wkt/l) for Itl< 1/2 , (32)

k

and zero otherwise; the summation on k is over all nonzero complex

coefficients lak1. Observe that 1 here is the total nonzero extent of

s(t), meaning that the effective extent of s(t) could be significantly less

than 1. If a-k T ak _ real, then (32) is a cosine expansion, and

includes modulations such as rectangular, Hanning, Hamming, Blackman [1],

Harris [2], and Nuttall [3], which are known to have very good sidelote

behavior in the frequency transform domain.

The low-pass modulation of the reference is taken to be

q(t) r 2 exp(i2wlt/L) for Itl < L/2 , (33)

and zero otherwise. lhe duration I. of the local reference is unrelated to

1; L can be larger or smaller than 1. The number of nonzero complex

coefficients is also unrelated to that above in (32).

16



TR 7543

The derivation of the cross ambiguity function between s and q is

carried out in appendix D, incl':ding all the generality introduced above;

the end resi t is given by (D-7). The linear-FM correlator complex envelope

response is given in (D-9), and a program for this result is given in

appendix C, under the title Arbitrary Envelopes and Durations.

17/18
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GRAPHICAL RESULTS

1his section is divided into several parts, corresponding to the

different envelope examples given above. In all but a few cases, the

time bandwidth product is kept fixed at

TW - 50, (34)

and the frequency sweep is upward versus time. Identification of the delay

and shift parameters is according to the normalized variables introduced in

(12), namely,

Xr r tr/1' Yr fr/W, Xd = td/ 1 ' Yd fd/W; (35)

the latter variables in (35) are explained in (2)-(5). The abscissa on

every plot is xr over the range -1,0l; thus each plot can be viewed as the

envelope of the correlator or matched filter response versus time. Although

the response may be nonzero outside this range, it is significant only

within the plotted region for all the examples considered.

RECTANGULAR ENVELOPES

lhe first plot in figure 1 is for equal-duration rectangular envelopes

for the transmitted signal as well as the local reference, and a single

highlight (point target) at xd 7 0, Yd 0 0; that is, there is no time

delay or frequency shift of the target. (Actually, the only quantities that

matter are differences of variables; see (13)). The response in figure 1

for zero Doppler mismatch, yr - 0, peaks at x r = 0 and has a narrow

mainlobe with adjacer, nulls approximately at i-(IW) : F.02 (for 1W >> 1);

see (17) and (19). However, there are significant sidelobes of peak

19
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amplitude approximately 2/(3w) = .21 -13.5 dB, and a smear of sidelobes

near x r o 0. These sidelobes will tend to obscure a weak close-by

highlight.

]he series of results in figures 2 through 4 correspond to different

amounts of frequency mismatch between the local reference and the received

signal. For convenience, all this uncertainty is taken up by the reference

variable, that is, yr .25, .5, .75, respectively, with yd 7 0;

however, this mismatch can occur in practice due to unknown target Doppler.

The peak response and sidelobes decrease proportionately as the frequency

mismatch increases. However, significant broadening of the response also

occurs, as predicted in (18)-(21); in fact, the mainlobe width for yr = .5

in figure 3 is approximately double that for yr 0 in figure 1. ihe

movement of the peak location along the xr axis is due to the inherent

large ambiguity of linear-FM along the 450 line in XrYr space.

Figure 5 depicts the normalized correlator response for two

equal-strength highlights separated only in time delay. This is depicted by

the small diagram in the upper left with two dots at xdYd 0,0 and

.06,0, respectively. That is, one highlight is at the origin in XdYd

space, and the other is displaced along the xd axis, which corresponds to

a slightly larger range. (A rotating target model which leads to these

multiple highlight locations in xd,yd space is described in the next

section.) Since the first null in figure I occurred at xr r ±.02, these

two responses are sufficiently separated to see their individual peaks
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clearly. However, there is a very large spurious peak between the two, of

amplitude approximately 40 percent - -8 dB of the desired peaks. This

undesired peak is the result of an unfortunate and uncontrollable vector

addition of sidelobes, according to (13).

The only change in figure 6 is to move the two highlights closer in

range, namely to separation .03 in xd* For this case of zero frequency

mismatch, yr = 0, the two responses can be resolved. However, when the

frequency mismatch is increased to yr r .25, the two highlights cannot be

resolved, as shown by figure 7. This is due to the broadening of the

response for yr o 0, as previously described in figures 1 through 4.

Again, movement of the peaks along the xr axis is due to the tilted

elliptical nature of the ambiguity function of linear-FM.

An example for three equal-strengLh separated highlights is depicted in

figure 8. The small diagram in the upper left indicates that two of the

highlights, namely those at 0,0 and .06,.06, are on the same 450 line in

XdYd space. This means that, for an up-sweep in frequency, these two

correlator responses overlap and are indistinguishable. This may be seen as

follows: each term in response (13) peaks when the second argument of the

cross-ambiguity function is zero; see (17). Thus each term peaks when

xr = Xd + Yr - Yd (for up-sweep). (36)
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But if Xd-Yd takes on the same value for two different highlights, the

same value of x r results in (36). Thus all those highlights along any

particular 450 line in Xd,Yd space will lead to overlapping responses at

the correlator output. For a down-sweep of the linear-FM, all highlights

along a common -450 line in Xd,Yd space will have overlapping correlator

responses.

In addition to the overlapping responses in figure 8, a very large

spurious peak, of relative amplitude equal to 60 percent -4.4 dB of the

smaller single-highlight response, is also indicated. ihe exact amplitude

of this spurious response depends on the particular phases of the three

highlights; these were 0,0,.283 radians for the example in figure 8.

Similarly, the value of the response at x r 0 depends crucially on the

phases of the two highlights on a common 450 line and has been normalized at

unity.

The unnormalized response for a four-highlight target is given in

figure 9; from left to right on the small diagram of the xd,yd plane,

the relative highlight strengths are .9, 1, .8, .9. Since none of these

highlights lie on common 450 lines, all four are resolved; in addition,

there is a large spurious response between the third and fourth desired

peaks. When the frequency mismatch is increased to yr .43 in figure 10,

the inherent broadening associated with a rectangular envelope causes the

two middle responses to coalesce, while the overall level of the response

decreases.
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The effect of using a down-sweep of the linear-FM, on a couple of the

multiple highlights structures above, is depicted in figures 11 and 12.

Specifically, in figure 11, none of the three highlights lie on a common

-450 line, and so are resolved at the correlator output; contrast this

result with figure 8 for an up-sweep. On the other hand, exactly the

opposite happens for the four highlight case shown in figure 12. Namely,

one pair of highlights lies on a common -45° line and the other pair nearly

so; the correlator response in figure 12 displays only two peaks, in

contrast with figure 9 which resolved all four contributions.

One conclusion from these observations is that it can be very difficult

to decipher, from the correlator response, exactly what the detailed target

highlight structure is. This is true even if both the up- and down-sweep

responses are available. Fundamentally, each highlight is characterized by

two location parameters, namely xdyd; but both sweep responses contain

insufficient information to resolve all the ambiguities of linear-FM in the

general case. These ambiguities will not be eliminated by the use of

different amplitude modulations, either; rather, it is the linear-FM which

must be modified, in order to alleviate the problems. Of course, the

requisite data processing will then be significantly more time-consuming.

GAUSSIAN ENVELOPES

In an effort to control the undesirable sidelobes associated with

rectangular amplitude modulation, the possibility of employing a Gaussian

modulation will now be investigated. The definitions of signal duration I
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and bandwidth W are according to (22)-(25) and (31); that is, 1 and W are

effective measures of duration and bandwidth. The transmitted signal and

reference waveform have the same duration.

The first result in figure 13 is a superposition of five different

responses, each corresponding to a different frequency mismatch. Iwo points

are to be observed: there is no pulse broadening and there are no

sidelobes. These properties confirm the analysis in (28)-(30). This leads

to the result in figure 14 for two highlights, which should be compared with

the rectangular envelope case in figure 5.

For two closely-spaced highlights, a frequency-mismatch does not cause

loss of resolution; see figures 15 and 16, which illustrate that the

resolution is just as good at yr = .25 as at yr 0. A direct

comparison of these results with figures 6 and 7 reveals significantly

different behavior.

The three highlight example of figure 8 is reconsidered in figure 17.

The spurious sidelobe is now totally absent, although the two highlights at

xdYd equal to 0,0 and .06,.06 still overlap at xr - 0. For a down-sweep

of the linear-FM, figure 18 illustrates resolution of the three highlights

and the absence of sidelobes.

The four highlight example previously investigated in figures 9 and 10

is reconsidered in figures 19 and 20. ihe same conclusion regarding fixed

resolution and lack of sidelobes is again realized.
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ARBUIRARY ENVEILOPES AND DURAlIONS

The high quality of the correlator response for Gaussian amplitude

modulation emphasizes the need for shaping the transmitted and reference

signals. However, we must approximate the Gaussian function by some finite

duration waveform, in practice. Also, for a given transmitted signal and

corresponding received waveform, the possibility of utilizing a mismatched

reference modulation needs to be considered. The mechanism for achieving

this goal is afforded by the waveforms given by (32) and (33) and the

correlator response derived in appendix D.

The first result in figure 21 for one highlight corresponds to

rectangular transmitted signal and Hanning reference envelopes, of equal

duration; that is, L I. Very low sidelobes are achieved uver the entire

range of time delay, xd; however, the mainlobe width is broadened,

relative to figure 1. When the frequency mismatch is increased from

Yr = 0 to .5, figure 22 illustrates the absence of sidelobes but a

pronounced low-level pedastal; the plot has been normalized at peak value 1.

1o narrow the mainlobe width and deduce the importance of different

durations, the series of results in figures 23-26 for L/1 = .8, 1.2, 1.4,

1.6, respectively, were computed. These all correspond to one highlight

with no frequency mismatch. As L/1 increases, figures 21 and 23-26 indicate

that a trade-off between mainlobe width and sidelobe level takes place. The

ratio of durations, L/l = 1.4, in figure 25 realizes sidelobes of relative

35



TR 7543

.8

:-

o .6
L-
0

.4

0
U .2

-1 -. 75 -. 5 -. 25 0 .25 .5 .75
Xr

Figure 21. Rectangular-Hanning Envelopes,
Yr0, L/T I

0 .6
L-
0

4.)
to

.4
(D

0
U .2

-1 -. 75 -.5 -. 5 0 .2 .5 .75

Xr

Figure 22. Rectangular-Hanning Envelopes,
>Ir = .5,9 LiT =1

36



TR 7543

.6
L

0

.4___ _ _ _

L
L
0

U .2

q. - 75 -.5 -. 25 0 .25 .5 75 1
x.75Xr

Figure 23. Rectangular-Hanning Envelopes,
Yr 0, L/T = .8

.8

0 o
0

- .4

L.

0

.2

- -.75 -.5 -.25 0 .25 .5 .75 1
Xr

Figure 24. Rectangular-Hanning Envelopes,
Y,= 0, L/T = 1.2

37



TR 7543

.8

0~0-

4..

0
r. 2

0 -,__ _ _ _ _

-1 -.75 -.5 -.25 0 .25 .5 .75
×r

Figure 25. Rectangular-Hanning Envelopes,
Y,= 0, L/T = 1.4

:3

o .6
L
0

0
.4

.2

-t -.75 -.5 -.25 0 .25 .5 .75
Xr

Figure 2C. Rectangular-Hanning Envelopes,
Yr 0, L/T = 1.6

38



TR 7543

amplitude 6 percent -24 dB and a comparable mainlobe width to that of

figure 1. Increasing L/T beyond this value begins to yield significant

sidelobes, as indicated in figure 26. The loss in signal detectability due

to the use of mismatched signal and reference waveforms is investigated

quantitatively two sections hence.

The effect of frequency mismatch for this rectangular-Hanning pairing,

with L/1 1.4, is studied in figures 27 and 28. When coupled with figure

25 for yr 0, they indicate maintenance of a narrow mainlobe and

suppression of sidelobes. Thus, these desirable features can be realized,

for a rectangular transmission, by using a longer-duration Hanning reference

for crosscorrelation, even with frequency mismatch.

The correlator response of this pairing, for two highlights separated

by .06 in time delay, is depicted in figure 29. The sidelobe level is

markedly better than the corresponding case in figure 5. When this time

delay difference is decreased to .03 in figure 30, the two individual

responses are not resolved. This result is somewhat poorer than figure 6,

due to a slightly widened mainlobe for the rectangular-Hanning pair of

envelopes.

When the earlier three- and four-highlight cases are reconsidered in

figures 31 and 32, respectively, the results for the sidelobes are about as

expected, by now. Comparison with figures 8 and 9, respectively, confirms

the advantages to be accrued by utilizing a mismatched reference.
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lhe possibility of shaping both the transmitted and reference waveforms

according to a Hanning weighting is considered in figures 33 and 34, for two

close highlights. One important difference adopted in these two particular

figures is that, since 1 is the overall signal duration in (32), the

effective duration of a Hanning function is about T/2. To afford a

reasonable comparison with the earlier results for rectangular and Gaussian

envelopes, where T measured the effective duration, the value of TW was

doubled here. Thus we have TW - 100, but l(eff) W 9 50, still, in figures

33 and 34. The case of nonzero frequency mismatch, y r .25 in the latter

figure, reveals even better resolution capability than for yr = 0, and the

virtual absence of any sidelobes.

Instead of forcing the edge values of the waveforms to zero (as for

Hanning), the possibility of allowing a nonzero pedastal is considered in

figures 35 and 36. This is a compromise between rectangular and Hanning

functions. In particular, we tried a_1  a 1 .2, a0 = 1, in (32) and

(33), along with L = 1, leadingfa waveform center value of 1.4 and edge

values of .6. The results for yr 0 and .5, respectively, with TW

restored to a value of 50, reveal substantially reduced sidelobes relative

to the rectangular-envelopes case and a narrow mainlobe. A slight

broadening of the peak for nonzero frequency mismatch is also evident in

figure 36.

ihe devastating effect of overlapping correlator responses is depicted

in figures 37 and 38 for rectangular equal-duration envelopes. The former

figure has two equal-amplitude highlights with phases 0 and 3.71 radians,
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located as indicated in the small diagram at the bottom left. Use of

up-sweep linear-FM causes these two highlight correlator responses to

coalesce, leading to a broad response and numerous spurious peaks where the

sidelobes of each highlight happen to interact constructively or

destructively. (Notice that the abscissa covers the range -.2,.2 here,

rather than -1,1.) Whereas the true target is located at x r 0 on this

plot, the indicated multiple peaks are at .01, .03, .05.

A case of three equal-strength highlights is considered in figure 38,

with phases 0, 2.2, 4.73 radians. Again there is a broad response with a

pronounced spurious peak at x r -035. One way of becoming alerted to the

fact that a particular peak may be spurious, is if there is a broad response

surrounding it; compare figures 37 and 38 with the earlier ones.
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A ROIAING MULTIPLE-HIGHLIGH1 TARGEI MODEL

In order to see how dispersions in XdYd space, such as considered

above, can arise in practice, consider a distant line target rotating with

angular rate w; see figure 39. The angle 8 -O corresponds to the plane wave

arrival angle of incident energy at carrier frequency fc" A highlight is

presumed present at origin 0 with parameter values td - , fd = 0; i.e.,

xd 0. y d = 0. (The absolute range to 0 and the radial movement of 0

have been absorbed in differences between reference parameters tro f r and

tdo f with no loss in generality.) The angular rotational rate, w, of

the line target is equal to de/dt.

The incremental round-trip time delay to the highlight at cylindrical

coordinates roe is

td 2r sin seconds (37)

relative to the origin 0, where c is the speed of sound. And the frequency

shift is

-2f -2f r cose
fd 2v(radial) - 2f c d c r (38)

d c c c dt (rsine) c

For sample values { e= =M r~ asec,

r = 100 ft. c = 5000 ft/sec, f = 3000 Hz, 1 = .5 sec, W = 100 Hz, (39)
c
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substitution in (37) and (38) yields

t d fd

x -d- T .08 sin , Yd = W -.0209 cos e. (40)

Thus if 0 14.65, we obtain

xd =.0202, yd -.0202, (41)

which lie on a common -45° line and will, therefore, lead to complete

correlator response overlap for down-sweep of the linear-FM. On the other

hand, for e = -14.65 °,

xd = -.0202, Yd = -.0202, (42)

meaning overlap for an up-sweep.

Generally, for up-sweep linear-FM, rotating targets that are approaching

broadside (relative to plane wave arrival angle) can lead to overlap in the

correlator response, regardless of quadrant (e) and direction of rotation

(sgn(w)). Conversely, for down-sweep linear-FM, rotating targets that are

approaching endfire can be subject to overlap, regardless of quadrant and

direction of rotation. The exact amount and effect depends on all the

parameters listed in (37) and (38), in addition to the signal duration T and

bandwidth W.
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Since td and fd in (37) and (38) are both linearly proportional to

target radius r, multiple highlights for a line target all occur on the same

line through the origin in XdYd space. Thus, when overlap occurs for

one pair of highlights, it can occur for all highlights. Use of both up-

and down-sweeps of the linear-FM will guarantee at least one nonambiguous

response for a line target.
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LOSS OF DEIECTABILIlY CAUSED BY MISMAICH

In the presence of white noise over the band of the received waveform,

the local reference should match the transmitted signal, in order to

maximize the deflection for each highlight individually. But earlier

results have demonstrated that sidelobes can be significantly suppressed by

deliberate mismatch of the local reference. Here we will quantitatively

evaluate the loss in detectability caused by this mismatch, for a low-

frequency application.

Suppose the real received waveform is

s(t) * n(t), (43)

where n(t) is white noise with a double-sided spectral density Nd

watts/Hz. For deterministic reference waveform r(t), the output of a

correlator is proportional to

x =fdt [s(t) * n(t)] r(t). (44)

The mean and variance of output random variable x readily follow as

Mx : fdt s(t) r(t),

2 _Nd fdt r2(t), (45)
0X d

respectively.

The output power deflection is defined as

2 2d 2  mx [fdt s(t} r(t(46

0 2 Nd f dt r2(t)
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This quantity is maximized when the local reference is chosen according to

r(t) r s(t), resulting in optimum deflection value

d= s (47)
0 Nd Nd

We shall be interested in the ratio of the actual deflection, d2 in (46),

to the optimum value, d2 in (47), for a variety of choices of reference

r(t).

The relative power deflection of interest is therefore

d2 [rfdt s~trt"1 2 _

R = = (48)
d 2  jdt s 2(t) fdt r2 (t)

which is seen to be independent of the absolute levels of both signal s(t)

and reference r(t); however, it does depend on the relative shapes of s(t)

and r(t).

The particular case we shall study here is a rectangular envelope for

the transmitted signal,

s(t) -1 for Itl < T/2, (49)

and the arbitrary envelopes for the reference that were previously given in

(33). In particular, we allow here

r(t) 2 x cos(2wrt/L) for Iti < L/2, (50)
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where the coefficients 18]are restricted to be real. This class allows

rectangular, Hanning, Hamming, etc., functions [3]. Reference duration L

can be larger or smaller than transmitted duration T.

The quantities needed in (48) follow readily upon use of (49) and (50):

f dt s 2(t) -- T,

dt r 2(t) -- LB 2 l~ +]= LD,

00 L for L < 1

jdt s(t) r(t) (51)

t E sinc(.tl/L) for L > I

Combining (51) and (48), the relative power deflection is given by

L1l32  for L<l
TO 0 T

R -(52)
T I sjnczkT/L) for L > 1
L 0 z Tn~~

The dB loss in detectability relative to the matchei reference case is

then given by 10 log 10 R. This quantity is plotted in figure 40 for six

different choices of reference, versus the duration ratio L/T. This figure
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reveals that a Hanning reference loses only .4 dB if the ratio L/IT 1.75 is

utilized. However, even at the smaller ratio L/T r 1.4 (as utilized in

figures 27-32), the loss is only .5 dB. This appears to be very tolerable,

considering the large improvement In sidelobes that can be realized then.
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SUMMARY

lhe correlator response for a variety of transmitted signals and

reference waveforms has been derived and plotted for several examples,

including targets with multiple highlights. The generality of the programs

listed in appendix C allows the user to numerically investigate his own

cases of interest, in terms of the multiple-highlight response, for a wide

range of parameter mismatches and transmitted-receiver pairs of waveforms

selected.

Significantly reduced sidelobe levels are achieved at the expense of

slightly broadened mainlobe response and about .5 dB loss in detectability.

Ihe length of a Hanning local reference waveform should be about 40 percent

greater than that of a rectangular envelope transmitted signal, in order to

achieve a reasonable compromise between sidelobe levels, mainlobe width, and

detectability. Re-design or reshaping of the transmitted and reference

signals can accomplish even more in terms of sidelobe reduction; however, a

transmitter peak power limitation would then not be fully exploited. The

interaction of such practical limitations precludes specification of any

unique design.
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APPENDIX A. DERIVA1ION OF CORRELAIOR OUTPUT

GENERAL CASE

The noise-free correlator output is obtained by substituting (2) and

(4) in (6):

C~t f dt w(t) r*(t)

£dt Ad s(t-td) q*(t-tr) exp[i 2,r(fd-fr)t + i 0 i er], (A-1)

where temporary variable

= 21 [(f cf r)t - (f cf d)td ] .  (A-2)

The cross-ambiguity function between (complex envelope) signal s(t) and

reference q(t) is defined as

Xsq('Cv) = f dt s(t) q*(t -C) exp( -12wut) (A-3)

for arbitrary time delayt and frequency shift v; some useful properties and

alternative forms for the cross-ambiguity function are given in appendix B.

Employment of (A-2) and (A-3) in (A-1) yields correlator output

C(t r f r) exp[1i(f cfr )t r-er] (trfr), (A-4)

where

c(t,fr) 2 (tr--t f-f) (A-5)
r r 5d sq r d' rd
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and

Bd = Ad exp[-1 2 w(fc fr)td] (A-6)

Each of the exponentials in (A--6) is virtually a random phase shift, since

each highlight delay td is unknown and fc is a high-frequency carrier.

For example, at a carrier frequency of fc T 3000 Hz, an incremental target

delay of 1 msec (5 foot range) causes a phase shift of 2w(3000)(.001)

radians = 10800. Thus the complex phasors {Bdj in (A-5) can reasonably be

taken as statistically independent vectors, each uniformly distributed in

angle over 2- radians.

The magnitude of (A-4) or (A-5), IC(trifr)1, is the physical

envelope of the correlator output, versus reference time delay t andr

frequency shift f r' that would be observed in the absence of noise. The

general result in (A-4) and (A-5) applies for any transmitted signal and

reference pair.

LINEAR-FM

We now specialize this general result to the particular case of linear-

FM; specifically, let signal

s(t) 5(t) exp(it 2), (A-7)

where s(t) is a low--pass amplitude modulation. The instantaneous frequency

is 1t Hz, which is zero at time t:O; thus s(t) should be centered around t O
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in order that s(t) correctly represent a complex envelope. Similarly, for

the reference, let

q(t) g(t) exp(irBt2). (A-B)

Substitution of (A-7) and (A-8) in (A-3) immediately yields the relation

Xsq(tCu) XqCr,v-4) exp(-irTf. 2 ) (A-9)

in terms of the cross-ambiguity function of low-pass amplitude modulations

s(t) and q(t) (which can be complex). Alternatively, using the symmetric

version, X, of the cross-ambiguity function,;, as defined in (B-6), we have

Xsq (r,v) = slTuO)exp(-lirvr) (A-10)

and

Xsq ', ) = §sq(CV-8,C) (

This enables (A-5) to be expressed as

(t rof r)  B , 'd exp[-iw(f r-f d)(tr-t d)] Xsg(t r-t dtf r-f d-B(t r-t d)). (A-12)

This is the general result for the complex envelope of the linear-FM

correlator output, in the absence of noise.

BEHAVIOR OF (A-ll)

lhe fundamental quantity in (A-12) governing the correlator output is

the cross-ambiguity function of low-pass modulations s(t) and g(t). If

these modulations are unimodal, centered at t=-O, and of approximate extent

1, then cross ambiguity functionX (T,v) in (B-6) or (B-7) has

approximate extents T,1/1 respectively in the t,u plane. Therefore
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q (Txy/1 ) S Xo(x, y )  (A-13)

has approximate extents 1,1 in the x,y plane.

It also follows from (A-1l) that

'( ") T T )' (A-14)

For fixed frequency shift v, as we increment T, the variation in the second

argument of is magnified by the factor 1W over that of the first

argument. Thus, we are then taking virtually a vertical slice in the

normalized ambiguity function?0 ; this magnification means that a time slice

(in t) of ). cuts through the frequency doma'i peaks and sidelobes of the
sq

ambiguity function 
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APPENDIX B. CROSS-AMBIGUITY FUNCTIONS AND PROPERI[ES

DEFINITIONS

The cross-ambiguity function between two arbitrary complex functions

a(t) and b(t) is defined as

Xab(jv) dt a(t) b (t--t) exp(-i21ut) , (B-I)

where t and v are time delay and frequency shift parameters, respectively.

If we define the Fourier transform of each function according to

A(f) = dt a(t) exp(-i2wft) ,

B(f) f dt b(t) exp(-12ift) , (B-2)

an alternative form to (B-1) is obtained:

Jab(',V) df A(ffv) B (f) exp(i2wtf) (8-3)

VOLUME CONSERVAl ION

Since the volume integral

Jf ci du IXab( .1 2

- d- d dt I dt2 a(tI) b (tI- T) a (t 2 ) b(t2 -T) exp(-i2,rv(t 1 -t 2 ))

- d t dt I dt2 a(t1 ) b (t l - r) a*(t 2 ) b(t2 -1r) S(t I -t 2 ) t

: Jdt Idt1 la(tl) b(t 1 - fdt = f t 1, Ia(t 2 fdu jb(u)j 2

= Xaa (0,0) 4tbb(O0) , (B--4)

it follows that

Sj dr du - Iab(T'v) 1 2 .0(B5

Xaa(OO)bb(OO) 1,(
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independent of the particular waveshapes of functions a(t) and b(t). Thus,

no matter how the volume (B-4) under cross-ambiguity function Xa(r,u) isab('' ) i
moved about in the U",v plane, it must be conserved according to relation

(B-5).

SYMMEIRIC VERSION

A symmetric version of the cross-ambiguity function is possible and

preferred in some cases; namely, define

Sdt a(t + 3D b*(t -- )exp( -i2wrd) .(B--6)

By use of (B-2), an equivalent form is

Tb( ,v) J df A(f + 3) B (f- exp(+12vtf) , (B-7)

which retains the same symmetry. A simple change of integration variable

readily reveals that the two forms of the cross--ambiguity function are

related according to

X ab( TI v ) - ab(T-1v) exp(-iwv T) (B--B)

In particular,

I ab(T iV)) = i ab(T ,) ; (B -9)

that is, both forms of the cross-ambiguity function have equal magnitudes

for all t-,v. There immediately follows the same conservation as in (B-5):

Jfdt d ab(rVl 2 I (B--l 0)

Xaa(O O ) "bb(0,0)
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AUIO-AMBIGUIlY PROPERTIES

Suppose that functions a(t) and b(t) are equal to some common signal:

a(t) -- b(t) -- s(t). (B-11)

Then (B-5) (or (B-lO)) yields the relation

dt 1u . (B-12)
f~ ss (0,O)

Now if signal s(t) is of duration I seconds and bandwidth W Hertz, then

ss (t,u) extends approximately over a region of width 21 in T-, and 2W in

V. If a negligible volume is contained under the peak of Xss("C,v) at

the origin, which is reasonable and possible for TW >> 1, and if the

relative ambiguity function magnitude could be maintained absolutely flat

away from the origin, of height H, (B-12) yields

2T 2W H2  = 1 , H -- 2(B--13)

In fact, this situation is impossible to attain, and the ambiguity

function X.5(77,v) develops wiggles versus Tuv. Even for a good signal

design, factors of 2 or larger are expected; thus a ballpark estimate is

that

peaks of /s5( V) for a good signal, (B-14)

but this can be expected to be exceeded occasionally.
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As an example, for time bandwidth product TW = 50, (B-14) yields

relative peaks of height .14; actual numerical calculation for a rectangular

linear-FM yields some peaks of value .21, which are 50 percent greater than

estimate (B-14). These peaks are in addition to the large elliptical

mainlobe, along a diagonal in the rv plane, that is inherent in a linear-FM

waveform.
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APPENDIX C. PROGRAMS FOR CORRELATOR RESPONSE

lhree main programs are furnished here, corresponding to the examples

of low-pass modulations presented in the main body of the report. They are,

respectively,

Rectangular Envelopes,

Gaussian Envelopes, and

Arbitrary Envelopes and Durations.

The last program contains a subroutine, SUB Crossambiguity, which

calculates the cross-ambiguity function between (32) and (33) for arbitrary

tr, T, L, {ak}, lb . More detQils are found in appendix D.

10 'ECTINGULAR £N',,,'ELOPE'.
0 . REFEREHCE FREOUEN:"Y :HIFT fr. W

T,..=50, I TIrIE--BNrIL ITH FROILI:T TN
40 _-;. + I . UP 0. NH FREI!IEN -:' E .S EEP
50 DATA .9, .L'* ,0. ,0. TARGET AMPFLITUDES
6 0 DATA 0. 0. ,0., 0. 0 . TARGET PHA:-;E'
70 DT A 0., C' 6, C.) . . i TARGET TIME DELAY"; t d T

DATA 0. 0. ,0. , 0. TARGET FREI._ENC"i 'SH I FT'S f d 1
S T I M F d,: 1 :5 , F d 1: 5 ), d 1 :5 , :1:5)

100 R E A D A d * . F'd X Yd
110 DOBILE N I NTEGER
120 GINIT
130 P'LOTTER I "G RAPH I CS
140 GRAF'HIC.- ON
150 n Ow -I., W.I,.,D.
160 GRID .25,. 2
S17 T 1 =FI *T.
I-1 ii FR r=- I . TO I. STEP .001 REFERENCE TIME DELAY t r T
190 : r=C: .
0L FOR N=1 TO 5
I1 IF Ad(N' =0. THEN 320

2 0 T 2 = r : d t: I

S30 T:3 = Yr -Y d : N I.
4 C T4=T1,:TS-See:*T2 I:,

50 T5= I. -FiB'c,: T2
2it0 T5=MAX'( 0. , T5>

0 IF T4 >0. THEN T5=SIN T4.-T5. T4
2.8 0 T6= Ad (N T5

-.0 T7=F'd N :,-T IT2+T3
i V ': r =-C r +T *CO' T7
I i=C- S+I *SIN, T..7
-0 IiE> T N
- P LO T I :r- ,1: rIr+ Ci -

:4 0 H E::*, T :'r

-LI PENUF'
3 0 EN'.D 6"/
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10 GAIJ SS:-;'S I FIH Et I".EL:P ES
20 F ERREFEPEtIC E FPEQ CIEN: 1 S-_HIFT fr N
30 T .5I. T IME- B A.INDW i I rH PF'T'DUC T TW
40 - + 1 . -UP"DOWN FFE DUENM" SWEEP

50 DATA .9, HT,0. .0. . TARGET ;-11MPL I T U DE-;
0 D ATA 0. ,0 C, C0. TR GET PH -E

70 DATA 0. . 0 0. C0 . 0. TARGET TI ME fELA ,-- t d -.T
0 DATA 0. 0. 0. C . ,CL. 1 TARGET FREOUENC. '-.HIFT': fi W

90 DIM Ad,. 1: 5.,Pd.15:X d,1.:5 "'Yd1I:5;
100 RE ,-':* E, A1 F d d ,
110 DOUBLE N INTEGER
120 GINIT
1:30 PLOTTER IS "GRRHICS"
140 G R AP H I C: ON
150 WINDOW -1., 1.,0., 1.
1 60 GRID .25 . 2
170 T I =- I -- Ti
1:0 P Fl ..'2
190 T ,2-= T, T,
200 F 0R : - 1. TI: 1. STEP .001 REFERENCE TIME DELA", T

210 Cr.: i =0.
220 FOR N1I [O 5
2:30 IF Ad'N 0. THEN 3:30
-4 C T ; =>: 1: d N .:,

'50 T 3 =Yr-'d N
60 T4 =P2 K T2*T2+Ti..2* K T:,-S.,p*T- ) * T :-e e p T2,
70 IF T4'>25. THEN :3:30

2.'0 T5=E.P,: '-T4.1
'90 T6=Ad(Mt')"*T5
300 T7='-d'N'I:-Tl*T2*TS

10 r =C i: r + T 6C* K N T 7

330 NEX.-T N
,40 PLO T 'r F,,i r Cr -: Ci C i)
-35 0 NEXT Xr

60 PENUP
,70 END
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10 APBITRARY ENVELOPE! AND DURAT ION.
20 Yr=O. REFERENCE FRE'-'UEN:Y SHIFT fr/N

c' Tu=50. TIME-BANDW IDTH FROUCT TN
4 L S + 1 LIP,..e + .1N FRE QUENC' S EEP
50 DATA 1. 00. 0. 0. TARGET AMPLITUDES
.0 DATA 0. ,Ll, 0..0. 0. TARGET PHASES
70 DATA 0. 0.,0.,0. 0. TARGET TIME DELA ,"S td T
8-0 DATA 0. .0. 0. .0. TARGET FREQUENCY SHIFTS fd/1N
9 L1 DIM Ad( 1 : 5, Pd( 1 : 5, d 1: 5) 1 : 5, Xr( 1000: 1I00I0) Er.,-1000: 1000)
100 READ A '. d(*);'::. d(*

110 DOUBLE I,1N INTEGERS

120 TI=PI*Tw
1 ,LI FOR 1=-1000 TO 1000
14I CJ (::r. I =.r=. 001 * I REFERENCE TIME DELAY tr* T

150 L:.=Ii =0.
I-Cl FOR N=1 TO 5
170 A=Ad(N.:
181.) IF A=O. THEN 270
19 121 T 2-. = :-: r. -:,,.d t-4N

2l T 3=YrYd(N)
• 1 L CALL Cross ambi guit y.T2 Tuk*(T -Sweep*T2) ,Zr, Zi..
22 T4 =Pd( N)-T1*T2*T3
230 TS=COS(T4)
24i T6=SIN(T4.
250 Cr=Cr.+A*(T5*Zr-TE*Zi
20 C:i=Ci+A*:T5*Zi+T.*Zr

270 NEXT N
2 0 Er,':. I )( = R ': Cr-*C: r-+ C i *Ci i
290 NEXT I

U00 B i g=rMA: K Eg = *
310 MAT Eri. '=Er,.. ,(Bi )
320 GINIT

LI PLOTIEi- IS GRAPHICS"

4:'1 GRAPHICS I
5 4INDOW - I . ,0. ,1

360 GRID .25,.2
:3 7 PLOT ' En.., K * )
3-0 PENUP
39 C.1 END

4006
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410 SB:_£ ar_-s.rbi, i ut.'.t.,Y , r,2i ) TauiT,Nu*aT

420 R=1.2 L'T
430 BFT0.,0.,0., 1.,0.,0a,0. a'.- 3:3 real1

440 DrITH 0.0 5 1q .5, 0. b:-3:3' coett1I:e, ntC
450 Zr-=-'7=O.
460 .rI = N .AX -5* 1.f -P

4 70 2= I N 5 1 -

4 C0 IF F F::=P.2 THEN B::ExIT
49 0 D OUB L E F- , LS INTEGE FS

50 RLLULHTE - : A, BR-3: 3)
510 READ A'*:,E'
520 i f =PI* R2-F.'I
530 :DLfIIP It' 2+PI 1

540 Tx=PI*X
550 FOR LS=-3 TO 3
5E0 P=Br L .)
570 IF B=O. THEN 720
580 T1=L=.R

590 FOR K =-3 TO 3
600 A=FA -')
610 IF H=0. THEN 710
E270 V =(-s+Tl

630 A-rg=Tx:m::* (s I.+T I )-urnj*
e40 IF 0<>0. THEN t 0

E50 Ts=Dif
E.0 GOTO 6 0
I,0 Ts=SIN:Di f, V

-0 Tab=A*B*T-.
G90 =Zr+Tab*IC IS1 A-rg

700 Zi =Zi +Tab* SIN' r g)
710 NEWT K:

20 NEXT LA.
730 SUBENr
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APPENDIX 0. CROSS-AMBIGUIIY FUNCTION FOR ARBITRARY

ENVELOPES AND DURATIONS

The symmetric cross-ambiguity function is obtained by substituting (32)

and (33) in (B-6):

ak ~ ~2 dtepiu{%-t +- - -)--(t- -I-)-t)] for t,< t

where

tl = max T l L +__
1 - 2 2 ' 2 2

t = min T - - --- T (0-2)

X is zero if t > t2. The relation in (D-1) and (0-2) holds for

arbitrary T, whether larger or smaller than T and/or L, and for arbitrary

L/I values. Actual integration of (D-1) yields

T (ru' ~ a b --- sin uv e t x p Vi 21 'LISv LI T )

(0-3)

where

v = vl - k 4- - (=vk) (D--4)

Now define a function
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Z(X.Y,R) =jj akb-- sin[,V(R -Rl~l exp[ifXkkR-vR -Rf
for RI < R , (D-5)

where

R- max{ -L-(l +X), -- (R-X

R2 mi n -l(l-X), 1(R X),

V = - k + A/R (=VU) ; (D -6)

Z is zero for R, > 2  Then the cross-ambiguity function in (D-3) can

be expressed as

sq(tV) _ z , vT, T for allt,u. (D-7)

A program for the evaluation of function Z is furnished in appendix C

in subroutine SUB Cross_ambiguity. The ratio of durations, R = L/l, must be

input in line 420, and the coefficients Jakj and must be entered in

lines 430 and 440, respectively; here, these coefficients are presumed to be

real. Also, the number of nonzero coefficients in (32) and (33) is assumed

to cover the range -3 to +3, but could be easily extended. The range of

coefficients currently programmed in this subroutine is sufficient to

encompass all the optimum cases presented in [3]. The particular i

example listed in line 440 corresponds to the low-pass modulation (see (33))

1 10+0 -exp( -i21rt/L)+l+-2 xp(i 2wt/L)+o+o

= 1cos(2wt/L) for Itl < L/2 , (D-8)

which is recognized as Hanning.
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The linear-FM correlator complex envelope response is then given,

according to (13), by

C(trfd)= T dB exp[-tTW(xr xd)(yrYd)] .

* Z(Xr-Xd' TW(yr- Yd ; (Xr- Xd )), L/T) (D-9)

A program for the calculation of the magnitude of c is also presented in

appendix C, under the title Arbitrary Envelopes and Durations. The number

of nonzero highlight strengths, tBdI, is currently programmed at 5 in line

90, but is easily extended. The amplitudes and phases of tBdj are entered

in lines 50 and 60, while the corresponding time delays and frequency shifts

are inputted in lines 70 and 80.
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Operating Characteristics
of Log-Normalizer for Weibull
and Log-Normal Inputs

A. H. Nuttall
ABSTRACT

The false alarm and detection probabilities of a
log-normalizer, subject to either log-normal or Weibull
input statistics, are derived for general input signal and
noise strengths and number of normalizer samples, N.
Plots of the exceedance distribution function versus the
threshold, as well as the receiver operating
characteristics (i.e., detection probability PD vs. false
alarm probability PF) are plotted for N=w, 64, 32, 16
and for various values of the normalizer input deflection
statistic d. In addition, simulation results, based on 8.4
million trials, are superposed for purposes of confirming
or rejecting the theoretical results.

Plots of the exceedance distribution function
are carried out on the extremes of the distribution, to the
point where the tail probabilities are IE-6. The receiver
operating characteristics vary over the range of (PF,
PD) equal to (IE-6, IE-6) through (.5, .99). It is found
that the theoretical analysis for the log normal input is
exact for all N, whereas the approximate theoretical
analysis for the Weibull input is sufficiently accurate only
for large N, and not on the tails of the distribution.
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OPI RAIING CHARACIERISICS OF LOG-NORMAl IER

FOR WE[BULL AND lOG-NORMAL INPUlS

INIRODUCT ION

lhe detection of the presence of a weak signal of unknown location and

strength in background noise of unknown strength is often accomplished by

comparing a candidate signal-bearing detection sample of the observed

process with a local estimate of the background level ba.,ed on N samples of

the (hopefully) noi,,e-only process. lhe local neighborhod can be time,

space, or frequency, depending on the application. In order to obtain a

stable estimate of 1he background level, the number of samples, N, should be

large; however, if the background is nonstationary, nonhmogeneous, or

nonwhite, or if decision and processing time is at a preiium, N should be

kept as small as reasonably possible. The tradeoff between these conflicting

requirements and the dependence on the number of normali'er samples, N, is

of interest in this study. Related work is available in [1,2,3].

Since the performance of the normalizer procedure outlined above is

adversely affected by the presence of any outliers or noise bursts

anywhere in the total of N+l samples used to make a decision about signal

presence or absence in the candidate sample, some form of limiting device
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',hould precede the normalization. ihe particular combination that we

ionsider in detail here is depicted in figure 1, where In is the natural

.. n n I Y Normalizer

Figure 1. Log-Normalizer

logarithm. The logarithmic device tends to saturate at large input

amplitudes and suppress their effect on the normalizer output z. lhe input

sequence of random variables, {xnl, (the detector output sequence), is

presumed to be statistically independent and limited to positive values,

qiving logarithmic output

Yn = tn(xn d1

The particular normalizer we consider here is described as follows:

call y the candidate signal-bear;ng sample at the normalizer input, and

let y' Y20 "'" YN be the N noise-only basis samples employed to

extrdct an estimate of the background level at the normalizer input.

Despite the notation, these N samples can (and probably will) surround the

candidate sample y in location, whether that be time, space, frequency,

etc. The sample mean of the normalizer input noise-only samples is

N

A 1n
(Y) = N Y(2)

n=l
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while the corresponding sample standard deviation is defined as

A -1 N 11
o(Y) = 4l-- LYn i (Y)] (J)

n=l

lhe output of the normalizer in figure 1, that we consider here, is a

deflection measure, namely

YO - V(y)

0( y)

Ih, numerator of (4) is an estimate of the difference in means (at the

normali/er input) of the candidate signal-plus-noise sample, relative to the

noise-only samples; the denominator of (4) is a measure of the inherent

fluctuation of the background noise. Ihe dimensionless ratio in (4)

eliminates the dependence on absolute levels in favor of relative levels.

Ihe normali/er output z is compared with a threshold 1, and a decision

made about signal presence in sample y according to the rule

z > : declare signal present in y 0

/ < 1: declare signal absent in y0

11 is desired to evdluate the false alarm probability and the detection

probdbility, that is,

3
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P Prob (z > 1 signal absent in y)0

(6)

P Prob (z > T signal present in y ).PD Yo)

Both of these probabilities in (6) are exceedance distribution functions,

that is, probabilities that random variable z is greater than a threshold

value 1. We will be interested in plots of (6) versus 1, for various

signal-to-noise ratios, as well as in plots of PD versus PF' the latter

known as the receiver operating characteristics.

The normaliizer input random variables fyn1 are statistically

independent and identically distributed, since inputs N have been

presumed to have these properties. When signal is absent in candidate

sample yo, its probability density function will be taken identical to

that of {ynVI; however, when signal is present in y0 its probability

density function can be arbitrary.

4
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CLASSES OF INPUI VARIABLES

lhe noise-only input samples {xn N to the log-normalizer in figure 1

will be taken from the class of random variables that can be generated from

fundamental independent identically-distributed random variables {wnI

according to the rule

b
Xn = a wn for l < n < N; a > O, b > O, wn > 0 (7)

lhe probability density function pw of jWnI is arbitrary; the total class

of random variables defined by (7) is that yielded by allowing parameters a

arid b to be any positive constants (independent of n).

lo fix this concept of a class of random variables, consider the case

where wn is a random variable with the fundamental exponentia probability

density function

Pw(u) - exp(-u) for u > 0 ({)

lhen the exceedance ditribution function of w is
n

00

Qw(u) z Prob(w - u) dv p,1(v) - exp(-u) for u > 0 (',)

u
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I then follows from (7) that the exceedance distribution function of xn i%

Qx (u) = Prob(x > u) - Prob(a wb > u)

Prob(w > (u/a)I/b) Qw = exp[( U)I/b] for u > 0 . (10)

But this is just the exceedance distribution function of a Weibull variate

l/b
with shape factor 1/b and scaling (1/a) Thus, the class of random

variables that can be generated via (7) with arbitrary a,b, from the

fundamental exponential probability density function in (8), is the general

class of Weibull variates, as given by (10). (If b 1/2, x is a Rayleigh

variate, for example.)

As a second case, let wn be a random variable with the fundamental

log-normal exceedance distribution function

Qw(u) An u) for u > 0 (Il)

%,here

t t

(t) - ds (2 ) -I/2 exp(-s2/2) ' ds O(s) (12)

-00 -00

is the cumulative distribution lunction of a normalized Gaussian random

%ariable. lhen by an analogous procedure to (10), the exceedance

distribution function of the random variable x generated according to (I)n

is
*s e ayFe vlc ix. A .

b
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Qx(u) = Q = for u > 0 (1:;)

which is the exceedance distribution function of a general log-normal

variate with additive factor .*n(a) and scaling 1/b. lhe probability density

function corresponding to (13) is

P (u) - -0 - for u > 0 (lZ)

where 0 was defined in (12). Thus the class of random variables that can be

generated via (7) with arbitrary a,b, from the fundamental log-normal

exceedance distribution function in (11), is the general class of log-normal

variates, as given by (13) and (14).

Returning to the general case for fundamental random variable w now,n

the output of the logarithmic device, (1), is given, upon use of (1), as

Yn - An(x ) : )n a + b In w n a + b ' for 1 < n < N (15)

where we define

n )n w n (16)

let the mean and standard deviation of n be denoted by V(;) anid 0(V),
n

rf"spectively, lhen form the normalized random variable
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.(

v n for < n < N ()

which has mean 0 and standard deviation 1. Substitution of (1I) in (15)

ihen yields log output

Yn= f Vn for 1 < n < N , (18)

where constants

a In a + b v("V) , 13 = b a( v) (19)

A direct useful interpretation of these two constants in (19) follows

directly from (18); namely, since fVnI are normalized random variables,

a (y), 8 - (y) (20)

ihese are fundamental statistics of the input to the normalizer in figure 1.

Equations (18) and (19) demonstrate that the output of the logarithmic
jw"

device in figure 1, for general parameters a,b and random variables I

in transformation (7), can be handled through the linear transformation (18)

of a normalized random variable, vn, with zero mean and unit standard

deviation. The new general parameters a,13 are given by (19) or (20), where

Ihe required statistics are mean

8
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v .(v) = p('n w) Jdu In(u)p w(U) , (21)

and mean square

2 - 2(22)

v = (,(n w)2  Jdu (In u)2 Pw(u)

in terms of the probability density function of input variable wn in

figure 1. Also, except for the specified zero mean and unit standard

deviation of v in (18), the statistics of v are completely arbitrary.n n

[bus, we can use form (18) for the gneral normalizer input in the following,

where a and 3 are arbitrary constants.

When we now employ (18), the sample quantities in (2) and (3) become

V(y) - , + 13 (v)

(23)

.(y) 1- (v) ,

where
N

)(v) N 2 vn

nzl

C(v) -N [V n (v )(24)

9
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in lerms of the normalized random variables 
N

As noted in the paragraph foliowing (6), the probability density function

of random variable y0 is arbitrary for the signal-present hypothesis.

Without loss of generality, let

Yo, (25)

where normalized random variable v has
0

ii(V ) = 0, o(V ) 1-  . (26)
jjv0 0,Ov0

The constants n and v absorb the absolute scale of y0; in fact (in analogy

witn (20)),

n z P(Yo), u = o(yo) (2/)

When we now combine (23) and (25) in the normalizer output z, as given

by 4), there follows

d - rv - (v)
A (28)
I(v)

whe:e constants

d (29)

10
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lhusj the general output z of the log--normalizer in figure 1, for the general

class of inputs (1), can be expressed in the form (28) involving two

fundmentdl constants 1, r in (29); an arbitrary normalized random variable

v ; and the sample mean and standard deviation of the normalized random

variables tvr N according to (24).

A useful physical interpretation of the constants in (29) is afforded by

utilizing (20) and (21), namely

( y o ) - ( y ) = ( YO )
a(y) , r - (y) (30)

Thus) parameter d measures the deflection criterion at the normalizer input,

relative to the stdnddrd deviation for signal absent. The parameter r is a

s(aling quantity reflecting the relative fluctuating strengths at the

normalizer input. lhe fundamental analysis problem is now to evaluate the

false alarm and detection probabilities specified by (6), for the output

random variable given by (28), where d and r are arbitrary constants, and

v and NvI are normdliled random varjdbles.

11
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CONSIANI FALSE ALARM RAIE PROPERlY

lhe general output of the log-normalizer is given by (28). However, for

hypothesis H where ignal is absent in candidate signal bearing sample

yO , the statistics of normalizer input y are identical to those of

{ 1' as noted in the paragraph under (6). In this case, (30)

obviously reduces to

d 0, r 1 under HO  , (31)

and (28) yields

vo! - )JIM
z - under Ho , (32)

G(v)

in terms of the independent identically-distributed normalized random

variables v and vV1.

Since v in (17) is the normalized random variable corresponding ton

logarithmic distortion (16) of fundamental random variable w , and doesn

not involve a or b, all scale factors involving constants a and b in (7) have

disappeared in outpul z in (32), under hypothesis H . This means that the

fal,e alarm probability PF in (6) cannot depend on a,b; put another way,

the false alarm probability for the log-normalizer of figure 1, subjected to

12
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the class of inputs given by (7), is the same for all members of the class,

regardless of the values of a and b. Since the sample mean and sample

standard deviation in (32) still depend on N, as seen by reference to (24),

the false alarm probability will necessarily be a function of N, as well as

depend on the particular probability density function of independent

identically-distributed normalized random variables v and {vn . However,

in general, there will be no need to investigate the false alarm probability

for the general Weibull class in (10), but instead we can confine attention

to the fundamental exponential probability density function of w as givenn

by (8). Of course, vn must then be the normalized random variable, as

given by (16), (17), (?1), and (22). More details on the statistics of

Weibull variates and their logarithmically-distorted counterparts are given

in appendix A.

A similar statement can be made with regard to the fundamental

log-normal exceedance distribution function given by (11). In fact, the

logarithmically transformed input, (16), to the normalizer has exceedance

distribution function

Q,(u) - Prob(V > u) - Prob(5n w > u) = Prob(w > exp(u))

Qw(exp(u)) = j(-u) for all u (3,)

But this is the exceedance distribution function of a zero-mean

unit variance Gaussian random variable. Thusi of (16) is already a

normalized random variable, and Gaussian at that. lhereforedecision

1 3
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variable z in (32) involves a collection of N+l independent identically-

distributed zero-mean unit-variance random variables v and N

Again, the false alarm probability can only depend on N, and not on scale

factors a and b in (13) and (14). Of course, the detection probability (6),

as applied to (28), will depend additionally on parameters d and r in (29)

and (30).

In summary, the log-normalizer in figure I will possess constant false

alarm rate properties, thdt is, the sa,:', false alarm probability for all the

members of the cliss of random variables generated according to (7),

regardless of the values of a and b.

14
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PERFORMANCE FOR LOG-NORMAL INPUl X

lhe problem of inlerest in this section is the evaluation of detection

probability (6) for the decision variable z given by (28), .!hen .crmalized

random variables wv N are independent identically-distributed zero-mean

unit-variance Gaussian random variables; this is the case discussed in (33)

et seq. Although the probability density function of normalized random

variable v0 is arbitrary, we will also take it here to be 4ero-mean

unit-variance Gaussian. Reference to (15), (17), and (25) reveals that this

is tantamount to assuming that the normalizer input {y in figure is

Gaussian with arbitrary mean and variance, while y is also Gaussian with

different arbitrary mean and variance. All these arbitrary parameters are

collected together in (28) in the parameters d and r, according to (30).

lhis situation is also equivalent to assuming log-normal excitations at the

input of the log-normalizer of figure 1.

From (6) and (28), since 8 > 0,

PD = Prob(z > I) = Prob(d * rv° - V(v) > T a(v)) , (34)

where 1(v) and D(v) are given by (24). It is shown in appendix B that 1(v)

and O(v) are statistically independent, with probability density functions

qiven by (B-16) and (B-20), respectively, (setting p - 0, ( 1) as

15
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-1/2N 2)

p(u) (21/N) -I / 2 exp(- u ) for all u (35)

and

m 2m-1 2 N-I
(u) ?m m u expl-mu ) for u > 0; m r -- 1 (36)

PC r(m) 2

Now the quantity d + rv - ^(v) in (34) is a Gaussian random variabl(,0

2 - 2
with mean d and variance r , I/N o N; see (B-16) or (35). Considering 0

fixed for the moment, the conditional detection probability in (34) is then

0r 0-1 1 42d - T \

PDC $ dt (2ro N 2 exp -- 2- I -j c 0N , (3/)

upon use of (12). Averaging this result over the probability density

function (26) of 8, we have the un~onditional detection probability

06

P - du N)2 mm u ! l(-mu2

N- e w2M
dw - - -I' w) (38)

N-3r r

0 22 p 2N )

where N > 2 and

d d
r aN  2r N yr i- I/N

- T = . (9 )

bft--1aNfN 7 r + UN

16
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Ihe fundamentdl parameters upon which PD depends are

N, number of normalizer samples;

1, threshold at normalizer output;

d, deflection criterion (30);

r, scaling (30) . (A0)

However, they show up, in integral result (38), collapsed into the three
I I

variables N, d,

For signal absent, we have d=O and rrl, as rioted in (31). Then (38) and

(:9) reduce to the false alarm probability

P = dw (41)
F 0 N-3 N - /

0 22

wich depends only on N and 1. Thus given a particular number N of

nnrrna li/er samples, threshold 1 can be selected to realize a specified value

o false alarm probability PF' lhis applies for the complete class of

]hg normal inputs, (13) or (14), into the log-normalizer in figure 1, and

c n be achieved without knowledge of a or b.

As N -) 00 , we have

A
C I N -) r as N -> , (42)

17
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giving from (37),

P0  r P F T) f or N = 6. (43)

This yields

(PD) [ + PF)] for N = (44)

where 1 is the inverse 1-function; this last result is useful for plotting

receiver operating characteristics on normal-probability paper. It

illustrates that for N- oo, those curves are straight lines with slope 1/r

and offset d/r at PF=.5.

The actual numerical evaluations of false alarm prolability (41) and

detection probability (38) are undertaken in appendix C. The inputs to the

functions considered there are the 3 parameters N,T ,d' as given byr r
(39), rather than the 4 fundamental parameters N,T,d,r listed in (40). This

is no limitation, since for any given values of N,l,d,r, the quantities

Nj, dr can be easily calculated via (39) and used as inputs to the

procedures in appendix C.

18
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PERORMANCE FOR WEIBULL INPUI X

Here we want to evaluate detection probability (6) for the decision

variable z giver) by (21), when normalized random variables vn1 are

independent identically-distributed zero-mean unit-variance log-distorted

Weibull variaLes. Before we do that, we observe that detection probability

(6) can be expressed generally as

P0  : Prob(7 > 1) Q (1) -Prob ( .> I )
- Proh(v 0 - ) fdu Qv 0 (r Pt(u) ,(45)

where we used (28) and defined random variable

t = I(v) - I A(v) (46)

in terms of the sample quantities in (24). The separation of functions in

the last form in (15) is due to the fact that random variables v and t

atre , Stirdily independent of each other. When signal is absent, then

(I 0, r 1 according to (31), and (45) reduces to false alarm probability

P F f du Qv (u) pt(u) (47)

19
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In the special case where N -*l, that is, a very large number of sample',

used in the normalizer, the sample quantities in (24) approach the true

mean 0 and standard deviation 1 of normalized random variibles {vn  arid

tends to the constant 1. ]hen (45) and (4/) reduce to

PD Qv(IrF) =QV (1) for N - cD. (48)
0 0

This limiting case can be used as a comparison with practical cases where N

is large, but not infinite.

We now specialize the above general results to the case of log-distorted

Weibull variates {vn " Although the probability density function of

normalized random variable v is arbitrary, we will also take it here to

be a normalized log-distorted Weibull variate. In this case, the exceedance

distribution function of random variable v is given by (A-I) as0

Ov(u) = expexp (Y + f6 u 1  for all u (49)

where Y7.57/21 is Euler's constant. Thus, the detection arid false alarm

probabilities for N =oO, as given generally by (49), arc irP3; y

available upon use of (49).

The probability density function of random variable t defined in (4b) is

a much more difficult task for finite N. To make any analytic progress, we

have had to assume that t is Gaussian; this can be expected to be a fair

approximation if the number of normalizer samples N entering the sample

20
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(1i,intiLies in (24) is large, according to the central limit theorem.

However, we can anticipate that the approach of random variable t to

normality will be faster near its mean, but considerably slower on the

lails. Ihis can lead to a significant bias in the calculation of small

falbe alarm probabilities.

lhus, our assumption is that the probability density function of t in

(46) is given by

-1/2 u jFt21
pt(u) =[2d o2(t)] expF- L- 2 (50)
t IL 2 M (t

(,oibiriing (49) and (50) in (45), the detection probability is given

(approximately) by

f du exp -exp (+ i + U

1 [ a(t ex)] -112 xp L:

2 (t)

P- (?l) dx 2 -exp (h 1 h2  (51)

where constants

h 'Y_ ____ + Pt h() (52)
h]: - 1 r ' 2 r

Iho false alarm probability follows upon setting d 0 0, r = 1 in (52).

Ihe fundamental parameters in integral result (51) are d and r, along

v,ith mean p(t) and standard deviation o(t) of random variable t. lhe

21
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coiiplexity of random variable t, defined by (46) and (2), precludw' us from

evaluating mean p(t) and standard deviation o(t) exactly. However, numerout,

simulations, each consisting of 100,000 trials, enabled us to extract the

following rather a(curate rules of thumb for the statistics of t.

First of all, for general definition (46), we have mean

arid variance

12 (t) - 2i(v)l f- 1'4 21 ~() ~v~p,(54)

where p is the normalized correlation coefficient between (v) and 0(v).

lhe simulation results alluded to above, for normalized random

vriables fvnI in (24) being log distorted Weibull variates, are given by

i4'(v)3 - 0 PI^(vf)I - N

021 d=I1(v) 1 . od2"I(vS N N 1.5

p -.55 (55)

Observe the large value of p, in contrast with the earlier case of a

Gaussian input to the normalizer, where the sample mean and sample standard

deviation were not only uncorrelated but in fact independent; see appendix H.

2?
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he quantities in (55) depend solely on N; when used in (53) and (54),

it is seen that (t) and o(t) in (54) depend on both N and threshold T.

lhus, the totality of fundamental parameters of relevance in detection

prohability (51) is d,r,N,l, just as for the Gaussian case in (40).

Analytic evaluation of integral (51) is impossible; accordingly, numerical

integrdtion was employed.

An alternative approximation to the statistics of random variable t of

(46) is undertaken in appendix D. Namely, for large threshold values T,

where random variable t is dominated by sample standard deviation I(v), it

miiqht be thought that a X-approximation would have wider applicability than

a Gua3sian one. This is indeed true, as will be demonstrated by the

numrical results to follow; however, for small false alarm probabilities,

the X approximation also falls short.

23
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GRAPHICAL RESULTS

In this section, we will present graphical results for the exceedance

distribution funcLions and receiver operating characteristics for both the

Gaussian and the log-distorted Weibull inputs to the normalizer in figure 1.

This corresponds, respectively, to log-normal and Weibull inputs (that is,

detector outputs) to the logarithmic device in figure 1. The theoretical

results of the previous two sections are augmented by simulation results,

;13
each based upon 2 8.4 million trials of decision variable (normalizer

output) z given by (28) and (24).

lhe scaling pirameter r, that is, the ratio of standard deviations in

(30), is taken at 1 for all these results, in order to keep the number of

plots at a reasoncble level. The deflection parameter d in (30) is varied

from 0 to values large enough to sweep out the important range of detection

and false alarm probabilities of interest. ihe number of normalizer

samples, N, is talen at the values M0, 64, 32, 16, whi,.h appears to cover

the most important range of practical use. Threshold value I in exceedance

probabilities (6) is allowed to vary widely, so that the full range of

detection and false alarm probabilities can be observed.

24
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GAUSSIAN INPUT TO NORMAIIZER

lhe exceedance distribution function (EDF), defined in (6), for N=* is

plotted in figure 2 versus threshold 1, for deflection parimeter d taking on

vaiues

d z- 0(1)9 = 0,1,2,3,4,5,6,7,8,9 (5b)

The arrow on the figure indicates the direction of increasing d; thus d4O,

which is the false alarm probability, corresponds to the cirve at the lower

left. The results in figure 2 are based on (43); since th, ordinate is

according to a normal probability rule, these curves are p. rfectly straight

lines. [xceedance probabilities ranging from 1E-6 to .999499 are covered

when threshold 1 is varied over the range -5,5.

When N takes on the values 64, 32, 16, the correspondiig results are

displayed in figures 3, 4, 5, respectively. These graphs .vere obtained from

(38)-(41), implemented by the procedures in appendix C. lie exceedance

distribution function for Nr64 in figure 3 is fairly close to that for Nrc6

in figure 2; however, by the time the number of normalizer samples N has

decreased to 16 in fibure 5, significant curvature has dev)loped in the

results.

(5
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Superposed in figure 5 are 11 simulation results for d=O(1)l, each

based upon 8.4 million independent trials. Due to the large number of

trials, the theoretical and simulation results are indistinguishable, except

near the extremes of probability 1E-6 and .999999, where the jagged

character of simulation results is manifested. This close agreement of

results not only confirms the theoretical analysis but also lends credence

to the use of simulation for the estimation of probabilities out on the

tails of the distribution, provided that enough trials are conducted.

Figures 3, 4, 5 furnish information which enables the selection of the

required threshold T to realize a specified false alarm probability for

N = 64, 32, 16, respectively. For example, figure 5 with d = 0 indicates

that to realize a false alarm probability of IE-5 for N 16, threshold T in

(6) must be chosen as 6.3.

When threshold T is eliminated, and the detection probability plotted

versus the false alarm probability, we obtain the receiver operating

characteristics (ROC). The result for N=*0 is given in figure 6, where both

the abscissa and ordinate are plotted according to a normal probability

scale. Deflection parameter d varies over the range

d = 0(.5)7.5 = 0,.5,1,1.5, ... , 7,7.5 (57)

The arrow again points in the direction of increasing d; thus d=O is the

curve on the lower right. These curves are precisely the straight lines

indicated by (44) with r=l.
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Corresponding receiver operating characteristics for N = 64, 32, ib are

presented in figures 7, 8, 9. The detection and false alarm probabilities

both range down to 1E-6, while the upper limits have been truncated at .99

and .5, respectively. Values beyond these limits can be obtained from the

earlier figures 2 through 5.

Superposed in figure 9 are ten simulation results for d = l(1)O.

Again, except for the small probability regions like PF < 1E-5, the

theoretical and simulation results are indistinguishable and overlay each

ulier. ia will be noticed that a characteristic wiggle in the receiver

operating characteristics is duplicated for every simulation result, at a

constant value of false alarm probability; for example, see the triangular

bump in all 10 simulation results at PF z IE-6. The reason for this

behavior is that when random variable z in (28) was simulated, the random

numbers employed in (24) to generate P and * were not changed when different

d values were considered in (28). The reason for this deliberate choice was

economy of computer execution time; that is, the time-consuming task of

computation of (24) was done once for each trial, and used in (28) for all

of the d values of interest. This repeated use of the same ^,^ values for

different d values gives a persistent systematic perturbation to the

estimated receiver operating characteristics at a fixed false alarm

probability. However, for 8.4 million trials, this bias is small, even for

the rare events with probabilities greater than IE-6, and was deemed

acceptable in light of the greatly increased computer time required for the

alternative approach of regeneration of I and .
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As an example of the use of figures 6 through 9, the values of deflection

d required to realize PF - IE-5 and PD 7 .5 are

d z 4.3, 4.7, 5.1, 6.2 for N r ob, 64, 32, 16 , (58)

respectively. The cost of reducing N from a to 16 is that d must be

increased by the factor 6.2/4.3 1.44; whether this is tolerable depends on

the application. The relation of deflection parameter d to any system input

signal-to-noise ratio depends on the particular processor form preceding the

logarithmic device in figure 1, and must be left to the user and his

particular application.

IOG-WFIBULL INPUt 10 NORMAIIZER

When the input to the normalizer is a log-distorted Weibull variate, the

performance is markedly different. the exceedance distribution function for

Ni a is displayed in figure 10 and has a significant curvature when plotted

on normal probability paper; these results are based upon the use of (48)

and (49). The use of the notation 'Extreme' is explained in (A-7) et seq.

When N is decreased to 64, the corresponding exceedance distribution

functions are given in figure 11. Due to the questionab)e assumptions

required in the theoretical analysis of this case and used in (50) et seq.,

simulation results were also superposed for the values d - 0(.5)5.

Agreement in the mid-range of probabilities is excellent. At the low end of

the probauility range, near 1E-6, the simulation results indicate a

systematically lower exceedance probability than predicted by theory.
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1his erratic trend of the theoretical approximation is continued and

accented in figure 12 for N32 and in figure 13 for N-16. In fact, in the

latter case, for threshold Tr5, the simulation indicates exceedance

probabilities for d=O that are more than 2 orders of magnitude smaller than

the theory predicts; see bottom right of figure 13. lhe discrepancies at

the high end of probabilities are also considerable, as seen at the top left

of the figure.

Also added to this particular figure is the result of using the

X-approximation for random variable t of (46), as detailed in appendix D.

Although the improvement in probability values is over an order of magnitude,

there is still another order of magnitude error left in this alternative

approximate approach. The reason for the difficulty in the theoretical

analysis is two-fold: (1) values of N like 16 or 32 are nol large enough

for the central limit theorem to have developed substantial accuracy on the

tdils; (2) the probability density function of a log-distorted Weibull

vdriate, as given by (A-7), is distinctly non-Gaussian on the tails. The

decay of (A-7) on the positive tail is much faster than Gaussian, while that

on the negative tdil is slower, being only exponential.
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The receiver operating characteristics for N=oo are given in figure 14,

while those for N = 64, 32, 16 are given in figures 15 through 17,

respectively. The discrepancy between theory and simulation becomes

progressively larger as N decreases, reaching the point in figure 17 where

the theory is entirely invalid for false alarm probabilities less than

approximately .001. The reason for the severe dip of the theoretical curves

to the left of each figure is the inadequacy of the false alarm probability

approximation, it being much too large for the larger threshold values; see

bottom right of figure 13. On the other hand, the simulation results in

these figures are all based on 8.4 million independent trials, making them

trustworthy well down near the 1E-6 level of probability plotted here.

As an example of the use of figures 14 through 17, the values of d

required to realize probabilities P F = 1E-5 and PD = .5 are

d = 2.2, 2.6, 2.9, 3.8 for N = o, 64, 32, 16 , (59)

respectively. The latter three values are extracted from the simulation

results in figures 15 through 17. Direct comparison of the absolute levels

in (59) with the corresponding Gaussian results in (58) is not valid,

because the shapes of the input probability density functions in the two

cases are markedly different and are more important than the deflection

criterion, defined by (30).
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CONCLUSION

lhe performance of the normalizer with a Gaussian input is capable of

exact analysis in terms of integrals which are readily evaluated via

recursions. The main reason that this fortuitous situation obtains is the

statistical independence of the sample mean and sample standard deviation

for Gaussian random variables. However, for other inputs to the normai!zer,

these sample statistics are highly correlated with each other and create an

untractable analysis problem.

An acceptable alternative in this latter case is simulation with a large

number of trials. Here 8.4 million trials were employed, which allowed for

estimation of tail probabilities in the 1E-6 range. If the false alarm

probability could be evaluated theoretically, then simulation would only

need to be conducted for the detection probability P And if PD were

of interest only in the range (.5,.99) say, then as few as 10,000 trials

would suffice for a decent estimate. However, it appears that, in general,

even the analysis for the false alarm probability involves some unmanageable

statistical relations.
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APPENDIX A. WEIBULL VARIATES

The exceedance distribution function of a general Weibull random

variable x is given by g; p. 5'2]

Q (u) = Prob(x > u) = exp (q) for u > 0; a > 0, b > 0 (A-l)

lhe corresponding probability density function of x is

1u - I

Px (U) = -Qx ( u ) = I exp _(u) I for u > 0 (A-2)

b
a b

The u-th moment of x is

- du uv p, (u) = a" r(l - bu) for v > -1/b (A-3)

lhe characteristic function of x is not available in closed form, for

general b; however

-- -1
exp(i~x) = (1 - ifa) for b = 1 (A-4)

ihe normalized cumulants of x, for general b, are independent of a; however,

they do not approach zero as either b 4 0 or b *oo . Therefore x does not

tend to Gaussian as the shape parameter b is changed.

A-l
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LOG-DISTORTED WEIBULL VARIATE

As indicated in (1) and (15), we are interested in the log-distorted

random variable

y = In x , (A-5)

where x is a Weibull variate with probability density function (A-2). The

exceedance distribution function of y is

Qy (u) = Prob(y > u) = Prob(ln x > u) = Prob(x > exp(u))

= Qx(exp(u)) = exp _ xu/b)] for all u , (A-6)

where (A-l) was employed. The corresponding probability density function of

random variable y is

py(u) -Q'(u) - 1 exp !_ exp(u/b for all u , (A-1)
y ba1/b Lb a/

which is a form of the probability density function for extreme values; see

[4; (14.65)]. We will refer to (A-7) as an extreme value probability

density function here.

A-2
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he characteristic function of random variable y is

7'
f y(if) = exp(ify) = exp(ifln x) = x =

=a [(1 + ilb) , (A-8)

the last step by use of (A-3); this is a generalization of [4; page 344,

exercise 14.4]. The actual numerical evaluation of the characteristic

function in (A-8) for real 7 is best accomplished by employing (A-7):

f y(if) = exp(ily) = du exp(itu) py(U) =

lib du exp(ilu) exp -b) (A-9)

b a I a

This can be efficiently and accurately evaluated by use of a fast Fourier

transform; the irntegrand decays very rapidly as u 4 ± .

In anticipation of getting the cumulants of random variable y, we have

from (A-8),

In fy(iT) = it In a + In [(1 + i'b) (A-l0)

Now from [5: (6.1.33) and section 23.2]

A-3
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In r(l + z) = -yz + (-I)n (n) zl/n , (A-i)

n=2

where y .57721 is Euler's constant and

00

J(n) 
1 1

k=l

In particular, 1(2) = r/6.

lhere then follows, from (A-10) and (A-i), the cumulants of random

variable y as

'in a - by  for n=l

y(n) = (A-13)

(_I)n f(n)(n-l)! bn for n > 2

In particular, the variance of y is X.(2) b2 i/6. For n > 2, the

normalized cumulant of y is

y__ ( C (n)(n-l (A-14)

.y (2) n/2 
I

which is independent of both a and b; thus random variable y does not

approach Gaussian as a and/or b approach any limits whatsoever. Ihese

results generalize [4; page 344, exercise 14.4].
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NORMAl I/ED LOG-DISIORTED WEIBULL VARIATE

If a-b=l in (7), then xn = Wn, and it then follows from (16) and (1)

that v i =n w i n x n=y n' In this case, we can use (A-6) with a=b=l ton n n n

obtain the exceedance distribution function of V as
n

Q%(u) = exp[-exp(u)] for all u (A-15)

Additionally, there follows from (A-13)

O) -y -.57721

ciC() (2) /f- (A-16)

We are now in position to determine the exceedance distribution function

of the normalized log-distorted Weibull random variable v defined inn

(17), namely,

Q (u) Prob(, > u) = Prob( > V(V) + 0( )u) =

v( a()u) exp -exp(-y r u for all u . (A-17)

A-5



TR 8075

LOG-NORMAL VARIAIES

For completeness, we list here the u-th moment of log-normal variate x

with probability density function as given by (14) and (12):

x f du uv px(u) I S u l0(a - ln(u)

0

12' t In(a)~ 2] x i v

- _dt exp x Ina+1 2b2
-- (A-I8)

A-6
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APPENDIX B. INDEPENDENCE OF SAMPLE MEAN AND SAMPLE VARIANCE

FOR GAUSSIAN RANDOM VARIABLES

N be independent identically-distributed Gaussian random

variables with mean and variance

- .2 2
x = Ij (xn - 2 2 for all n (B-i)

Define sample mean

N

l X (B-2)

n=l

and sample variance

N

v = g 2 (xn -m) 2 (B-3)

n=l

where scale factor g - 1/N or 1/(N-1) typically. (N > 2 required.)

We have, in vector notation

M N I T X = [l 1 ... l][x I  x2  .. . Tx ] (B-4)

and

v 2 - m2 N] [X- XT, -1X g xTQx (8-5)
v -n  N
n--I

B-1
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where

Q T1 (B-6)

The joint characteristic function of m and v is

f(T',0) = exp(irr, + iov)

["I TXN X]
ep I x + ieg xTQX (B-7)

Now the joint probability density function of vector X is

p(X) -T ~z. - exp 2X -

n=l

-( I 12 ) - N/2 F 1 (T 2 ITX + v (8-8)

2a2

1herefore

f((,2) a (2 2 dX exp 2xTx-2u 1Tx + 2N) +

+ i N1 1X + iog XTQx] (B--9)

Now we use [6; (B-i)]

rd rx 1 XTMX +LT X] (2?w)N] 112 rx M-IL (-0
dX [p- 2 - ~ det Mi e 2 (-

with identifications

M - I - i2og Q, L = + i 1 (B-II)

B-2
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Using the definition of Q in (B-6), there follows

M I - i20g) I + N l l (B-12)

Now from [6; (21) and (22)],

1 2 N-i
det M 2 (l - i2 0g)

a

M -g L - N 1 I (B-13)I i2aO2g

lhere follows

LTM-i L = N 2 + i (B-14)

and

1-N

f(T,0) = exp -_ (1 - i2 2g (B-15)

Since this joint characteristic function factors, it follows that sample

statistics m and v are statistically independent. Also the probability

density functions are obviously

Pr(u) - l -Nexp [ u 2N for all u (B-16)

and

N-3

2 
-u(u) u exp 27,;N) for u > 0 (B-i7)

P v(u  N - 2 -

!) (202 g)2

B -3
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Thus sample mean m is Gaussian with mean v and variance 2/N; while sample

variance v is chi-squared of N-I degrees of freedom with mean 2(N-l)g and

24( 2
variance 2a (N-l)g For the typical choice of gain g r 1/(N-l), this

2 24/
implies that v has mean c and variance 2a /(N-1), and therefore

lim Pv (u) = S(u - 02) (B-i8)

The sample standard deviation

s V-19)

has probability density function

2 2 u -x.____PS(u) = 2 u Pv(U 2) - N-i for u > 0 (B-20)

where

22
2 2 for g 1 i/(N-l) (B-21)N-i

ihe k-th moment of s is

r uk P 2 uN+(-u2/0) 
- I

s =-du up(u) N-i du/-i (B-22)

0 r(N- 1  2 2(Y

In particular,

= 0 2 (B-23)

B -4
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and [5; (6.1.47)]

112
r-2)

2+ 1/16 + 0 N-

( 8))-/ 2 N - 2

cr 1 1/4 9 1/16 2 (- 3

N- (N _( 
]

N -1 O(N as N co (B-24)

8
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APPENDIX C. PROBABILIIY RECURSIONS FOR GAUSSIAN CASE

lhe detection and false alarm probabilities are given in integral form

in (38) and (41). lhese integrals have already been encountered in

[]; appendix E], and evaluated in a recursive fashion. We will modify

those results somewhat, in order to better suit the current forms.

First, we have, from (41) and (39),

w0 V -exp(-w21 )PF dw N-3 /2) (-Tw) PF(N,T1) (C-1)

22

Define

x I + Tl  , where T= I . (C-2)

lhen from [1; (E-17)], using identifications (that is, replacements from

there to here)

T

r2 K -* N-2 (C-3)

+ T1

there follows the simple result

C-I
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2
a) 1 at 1 1 ' k

P(NT) = - iatn() TI x1  b x1  for N=2,4,6,. .., (C-4)I Ir 1 l b

k=O

where

bo 1 b k b k-l for k > I (C-5)
2

A program for this false alarm probability is given in appendix E under the

name FNPf246, where 1 is represented by variable Tp.

Also,

N-3
2

PF(N-' )  T l  a k for N=3,5,7,..., (C-6)

k=O

where

k

a = , ak = ak-l for k > 1 (C--I)
0o - k

These results are very tractable and efficient forms for recursive computer

evaluation. A program for (C-6) is given in appendix E under the name

FNPf357, where T' is represented by variable Tp.

I

The current form for detection probability PD = PD(N , ' dr)

in (38) is identical to [1; (E-l)] if we make replacements

C-2
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/

T
d d r iK N-2 (C-8)

+ 'r ,

(ihe curves in [1] are not directly applicable here because they employed

S2/(2the fundamental parameter dT -* d. which is d/r + 1/N) here; however,

the recursions derived there are immediately useable.) We can then use

[I; (E-8)] to develop an expression for P., in terms of the auxiliary

sequence {g(l) defined in [1; (E-7)]. In particular, [1; (E-9)] yields, with

xr = T T (C-9)

the result

g(o) = Tr exp ( r" x rr) ; (C-.0)

[1; (E-13)] yields

g(l) = (d r (.dr + dr g(O) , (C-ll)

and [1; (E-12)] yields

g(K) - xr[h(K)g(K - 1) + -- K g(K-2 for K > 2 (C-12)

with definition

h(K) ITd, K) (C-13)

C-3
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Then we can also use

h(U) = Tr d' 112 h(l) = Tr 'r 2 1

K-I

h(K) = h(K-2) - for K > 2 (C-14)

Finally, PD = PD(NTr,dr) is given by [1; (E-8)] as

- g(K) for N=3,5,7,
K 0K=O

K even
-- (C-iS)

N-3
P D2- '[ g(K) for N=4,6,8,

K=l
K ndd

where PD2 is the value of detection probability PD for N 2. Observe

that the input parameters to P are N,T',d, rather than the fo

fundamental parameters in (40); that is, N,l,d,r are collapsed into

NT' ,d' according to (39). Programs for (C-15) are furnished in
r r

appendix E under the names FNPd357 and FNPd246, respectively, where TI and
r

d are represented by variables Tp and Dp.
r

The quantity P0 2 in (C-is) is evaluated according to the method in

[1; appendix F]; an error tolerance and maximum number of terms must also be

specified to terminate the infinite sum given by [1; (F-2)].

C-4
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APPENDIX D. Z-APPROXIMAIION FOR RANDOM VARIABLE t

Suppose we assume that the random variable t in (46) is a multiple of a

X-variate with K degrees of freedom; then its probability density function

is [7; pages 5-7 for = 1/2]

Kt(U u x 2/(2A 2)

u K ex U for u > 0 (0-1)

I K 2 pKA K222

lhen the u-th moment of random variable t is

I du u" t u K2A1) (0-2)

and in particular

t=A t-2 AK (0-3)

lhen the ratio

R -  -= 1 + O(K- 3 (D-4)

D-1
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where the last result uses the development in (B-24) with N replaced by K+l.

Given a value for ratio R on the left side of (D-4), K can be solved for

uniquely, since the ratio involving gamma functions increases monotonically

from 0 to 1 as K goes from 0 to +a. In fact, to a good approximation for

large K, the last part of (0--4) gives

1 1 (0-5)

4(1-R) 8

Here we are allowing K in probability density function Pt in (D-1) to be

arbitrary, that is, not limited to integer values. Then we can solve for

the required value of A according to (0-3), as A' = t-/K. lhis

procedure fits the assumed probability density function form in (D-1) to

specified values of the first two moments of t given by (D-3), as given by

simulation results (53)-(55).

If we now employ the X-approximate probability density function for t

given by (0-1) in detection probability result (45), along with (49), we

obtain

P =  du exp ex + __ !R uq_ ex -u / 2A-))

0 AK 2 1

= [2 P I dx xK -1 exp [x2 12 - exp(h1 i h2 x) (D-6)

where constants

ird h A

h (r-)

The numerical evaluation of (D-6) was undertaken for N 16, and is

discussed in the Graphical Results section of this report.
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APPENDIX E. PROGRAMS

In this appendix, four programs are listed. They are written in BASIC

for the Hewlett-Packard 9000 Model 520 Desk Top Computer. Their titles are

EDF - Gaussian,

EDF - Extreme,

Simulation-Extreme,

Plot-Simulation.

lhe first one computes the exceedance distribution function for a Gaussian

input to the normalizer of figure 1, for N=16 (line 10) and for d - 0(1)12

(lines 9b0-970). This program is heavily based on the results of appendix C.

The second program computes the approximate exceedance distribution

function for a log-distorted Weibull input to the normalizer of figure 1,

for Nlb (line 10), r-1 (line 20), and d = 0(.75)7.5 (line 1070). It is

based on numerical integration of (51) via Simpson's rule.

The third program simulates the normalizer output (28) and (24) for a

log-distorted Weibull input, for N lb (line 10), d = 0(.75)7.5 (line 20),

r: I (line 30), and 2 8.4 million trials (line 40). The range of

E-1
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values in z is (-15,5), which is divided into 1000 bins; see lines 60, 90,

100. The resultant histogram is then summed on the upper tail to yield the

exceedance distribution function. The fourth program plots these simulation

results for the exceedance distribution function vs threshold 1.

E-2



TR 8075

Table E-I. EDF - Gaussian

10 Ns = i E I N I_ H1: L , D A H L E'-
20 1 =-7 THRESHOLD
2:0 X2= T LIMITS
40 DIM[ 0J] B$[.30]
50 DI P : I at, E1$., 1 : 10, Y ab ,I 1 -:0 )C

7 0 D I P1 r:: g d :. : 0 ,g r i d ( :1 : 0:

-0 DOUBLE L ,LnW. ,N.,, I, N., It
9 0 1

toL H-I$="Thr- ho 1 'il
1I10 Bt:"E - ei. Fr,-,w ei 1 It..,"t
120

1 I L = 15
140 FEII 1 $t " 1I:L:.),Xc ,crdK1:L:. :,
150 DIATA -,-3-.4-,2-,.,.,,,,
160 READ ':1 1ab 1 *S )
170 DATA-,6, 5, 4,,l0,i,-.4,.,,,
130 READ Xc, ocr 1*)
190

2 ] r-i PED I M ' ab e I L I U y. ' ri I : L .
-22 DATA E-6, E E 4, . 1, . :-, . 0111, .0 , .01 , . 05

30 DATA . 1 . . .5, .6. 7 : , , . . . -
24Ll DATA .95 ''?-:, .995C9, 9 '?'.9,. 9 999, 999999
5I 0 FE ' 1 .b e. 1 .:$ :

260 DATA I.E-, I.E-5,1.E-4,.001iI,.0I2,.05.,.L.2,.05
2 7 C, DATA . 2. . .:- : .4 ,.5,. I.?,.:-8,.'? ,.95, .'9,S-,.'?9

LI1- DATA 995, 998,. 999, 9999, 99999, 999999'
2FEI1 "',r d 0

:310 N :.= :15

32-0 REDIi '::,r i W I IV.'
3-0 DTA -75, 4,-3,-2,-1,0,1,2,,4,,,7
341 READ :D gr 1 d

-60 Ny,27
0O P .ED1i M 'gr" d 1 : H"

-380 DATA 1.E6,1.E5,1.E4,.0Ul,.00",.005,.0_,•0-,.05
-9L0 DATA . 1,.2,.-:,.4,.5,. . 7, 8, 9, 95 99

4LC0 D TA . 9 '? 5,. 99 ' '9 .'? 99 ' ? 99 9 '?

410 READ 'gr 1d'
420 l

4:30 FOR I=1 TO L!,-
440 Ycc' c r d , I ' Ir ,r h :. c c,,r di I
450 NEXT I
46 0 FOR I=1 TO H,;..
470 Y g r i d 1: I ' =F I r,' -: h i r 1 ,-I '

480 NE'.::T I
490 '1 =Y r" 'i I
500 1 2 g r 1 d
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51 1INIT yi - 240. '.,.'ERT I CAL PAPERP
52 PLOTTER I-; 505," HF1L
50 PRIHTEF IR 505
540 LIMIT FL''TTER 505, l. 1-:0. , . ,2'40. I 1111U = 2 rim
55I %).'IEWPPF T 2l., 12., 19 , 1:32.
5. 0 VI EWF' IT -!5. 59 122. TOP OF PAPER
570 VIEPF' T 2E.,, .. . , 6 02 ROT T OF PAP T E0
580 W I N D O W '1, : 2,Y 1 , 2
590 PR I NT "'-2"
600 FOR I=1 TO fN:.::
61 0 MOVE d' r c (I , , 1
620 DRAW gr i di( I..,
630 N E', T I
640 FOR I = TO lN
650 M0'V E I , "gr i d( I
660 DRAW '2 'gr d I
670 NE::.:T I
680 PENUP
690 LDIR 0
700 CSIZE 2.- 3.5
710 LORL 5
720 = I - :. 2-Y*.02
730 FOR I=1 TO L::
740 MOVE ':oor , i:,, Y

1750 LABEL :1 b c I I)
760 N E': T I
770 C:SIZE 3.,.5
'80 MOVE .5. . 1 +:2 0-. -6 ,'2-'1)>

90 LABEL AS
o00 CSIZE 2. *5

810 LORG 8
8 20 X=Y1-, 0 1
830 FOR Il TO Li,

:340 MOVE '", Ycoro- d< I
850 LABEL "labelSI.'
860 N E i'T I
8570 LDIP F1'.2.
880 CSIZE ".,.5
890 LORG 5
900 MOVE '1-. 15*,K ,2-X1), .5* ,1+72)
910 LABEL BS
920 PRINT "V'-36"
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940 F I =Si'PNs Nst 1)
950 F2=SIF!R ':Ns *Ns*Ns.- 1))
960 FOR I=0 TO 12
970 Ds=I DEFLECTION d
9IS0 Dp=D-.F I d
990 FOR It=0 TO 100

1000 T=x+D::.* I THRESHOLD T

1010 Tp=T*F2 Tr
10"2,r IF Dp > . THEN 10'80
10:30 IF H MODULO 2-0 THEN 1060

1040 Pd=FNP f 357 (tNs, Tp)
1050 GOTO 1120
1060 Pd=FNPf 246 (Ns ,Tp.)

1070 GOTO 1120
10 0 IF NI MODiULO: 2=0 THEN 1110
1090 Pd=FNd357 ':. N;, Tp, Dp

1100 GOTO 1120
1110 Pd=FNPd246 N. T,, Dp)

1120 IF Pd =0. THEN 1160
113:0 IF F'd =I . THEN 1160
1140 Y= F I rp h, Ft d i:,
1150 PLOT T,
1160 NE::.:T It
1170 PENIP
1180 N EXT I
1190 PAUSE
1200 PRINTER I*S CRT
1210 PLOTTER 505 IS TERMINATED
122 -,0 Et4D
12 -3 l I

1240 DEF FNIr',,phi() ' AMS 55, 26.2.
1 250 IF :::=.5 THEN RETURN 0.

1 U PMIN:.:, 1.-6. 07
1270 T=-LOG,: P,
1280 T=0R T+T.:,
1290 P I +T* I. 432788+T* 2 . 1 89269T*. 001 308i
1300 P=T- 2.515517+T*:.. ::02853+T*. 010328) ) P
1 10 IF K .5 THEN P=-P
120 RETURN P
1330 FNEND
1 :-4 0
1 350 DEF FNPf 246.:DOUBLE N, REAL Tp.) N=2 ,4, t.

13 E0 DOUBLE F. I I NTE';ER
1370 Pf =. 5-ATM ,:. Tp ..- PI
1:380 IF N=2 THEN RETURN Pf

1390 X=1. .' 1.+Tp*Tp.
1400 S=Bx=I.
1410 FOR K.;=1 TO N.2-2
1420 B.... = P.:.<*[.. ( Ks +.5 ,
1430 S=S+B;
1440 N E'X< T -'
1450 P f=P f-Tp*",S PI

1460 RETURN Pf

1470 FNEID
1480
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149 0 DEF FNPf:-57'.(.DOUBLE NPEAL Tp' H1=:3,5, 7...

1500 D0U :,LE [.s I NTEGER
1510 <=1. :*I.+Tp*Tp
1520 S. =A1.
1530 FOR =1 TO (N-'3)/2
1540 Ax = .:*( X K. 5.. K
1550 S=S+F
1560 NE T K
1570 P" f 5 ( .-Tp*SR C! K) *P .
1580 RETURN Pf
1590 FNEND
1600
1610 DEF FNPd246(DOUBLE N,REAL Tp,tIDp) N=2,4,G ...
1620 Errc'r=1.E-15 To letr-: it Pd fcr N=2
1 6:30 Nt err rs=50 Nuber c0 t0e r r -b -' t-f N=2
1640 DOUBLE K'.-. INTEGER
1650 X=I. 1 +Tp* Tp)
1660 Rk =;. SR .
1670 Tsq=Tp*Rk
I1630 Dsq:lDp D p
1690 R=.0R(2 .. PIl
1700 A I =AD0EcjP 5 * q -P I
1710 A=AI*Dp R
1720 BI=. 5*PI -TN(Tp.,
1730 B=Rk
1740 Pd=AI*B1+H*B
1750 FOR K'=.=2 TO Nterr.s
1760 F=FLT(K 1.-I ?
1770 T=D=.q*AI .. F
173-s0 A1=A
1790 A=T
1800 Rk =k *Tsq
1810 T= (Rk +F*B 1 ,."K--A
1:320 B1=B
1:30 B=T
1840 P=A*B
1850 Pd=Pd+P
13I60 IF . =Err cr *Pd THEN 18 90

1870 NEXT Ks
1330 PRINT "500 TERMS IN FNPd246"
1890 IF N=2 THEN RETURN Pd
11900 G 1 =Tsq*E:.P . - 5*Dsc*:..' * F NP h1' D p* T..)
1910 G=Tp*X*( ' AO+R* Dp*G1 )
1920 Fl=Tp*Dp..P
1930 F=Tp*Dp*R
1940 Pd=Pd-G
1950 IF N=4 THEN RETURN Pd
1960 FOR Ks=2 TO N-3
1970 R=(Ks- 1 )Ka
1980 T=FI*R
1990 FI=F
2000 F=T
2010 T=X*,:. F*G+R*G 1)
2020 GI=G
2030 G=T
2040 IF Ks MODULO 2=1 THEN Pd=Pd-G
2050 NEXT Ks
2060 RETURN Pd
2070 FNEND
2080
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--'090 DEF FNFHd357 EOUBLE N,FPEAL TpDV') N=:3, , 7,...

I--'10 DOUBLE .- INTEGER
lii0 ',1. , 1.+Tp-*Tp )

1 e T -s. , T p * I R

2140 G T E P: -2'.: *FNPh i D T
1 Pd F Ph i ,L: p '-1
1 rl IF N=3 THEN PETURN Pd
217r R R -;R':2 .P I

190l G=Tp* (E'::'P,:. D2 , P I+F- D *GI1

C, 00 FI=Tlp*Dlp.-R
:10 F=Tlp*Dt:*R
2 .-, 0 FOlR VKs=2 TO C -:---',

240c T=FI*R
5-' l FI=F
160 F=T

T 1'F * G+ F: G I

22 90 G=T

CIO0 IF K- NODULO 2=0 THEN Pd=Pd-G
2 1 NEXT .L

RE20 PETUPN Pd
-30 F HEND

1240
350 DEF FUPhi HART, page 140, #5708 :, #5725

,360 'H , ,: *. 70710 7:1 1:-' 4746
2370 SELECT Y
2380 CASE 8.

390 P= 1 1 .70:751 14 +*(456 26145:E7060926:31 +Y*':6. 0827162211948595 1+*
1 C0.064 5 4974L09542 5+','*. 41 '5 SC,6761::136 14 ,

.400 P=T2.5015-'1548 CG72 + *(71 1:3.6:32469540497+7* 675:.21696411 04:3589+7*
, 032.267010 049 74+ Y*P

2410 ''75 24 4 4 1C19 475. 7 9 "63.0049014230872+7* (:317. 6223: 3n4544077+'*
j53 - 77 10750CV 221 +Y*, + 7 :D:'944,9243 91:--95 5E.5 +Y :,),

420 C-3'5 0 79:15548054+Y'1* 1 1315. 192081 :544H-5 +'* 1580.53 59994020425+*
1 3 49. 34t5E1284 4 4+ 5 4 , ',

430 Phi =.5 E ' -*Y P'

2440 CASE 6.6

2450 P=2.74 r 7 42:'_-,564 140974070594 9+41 -+Y*. . 6 l19:10963054+7*

'101904'7 .E4- 4E+. ' . 2* 756I.2 -, 4472996595+'*.5 941 89 E414 -5507 4
460 =' C-r CI 0 :Zi -'777+7*'.9. 60:965:271927877 +'*' 1. flc144,774746004:3+ '*

2 .04:3951927, 51 5'29+'9 .9 t40162505415+7*': 22 6 5257' CLir G ' '

.470 Ph -i =. 5*E P . - *'F .Q
480 CASE ELSE
490 Phi=0.

2500 END SELECT
2510 IF 0. THEN Phi=l.-Phi
2520 RETURN Phi

j..530 FNEND
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Table E-2. EDF - Extreme

10 s.= 1£ NUMBER OF SAMPLES
20 Rs.: 1 RAT I r-

40 5

50 Ganr E.5 7,215664902
E.0 C 1 U- rr_ . o a

S- F' I R

90 =- A8. LIMITS 0N
100 = 8. INTEGRAL
ll I MEan muc Ci
120 ar ruc = 1 .
1:30 Me ar s.i gc v 1.-.:39 /M s
140 'o'.ar- i c...1 . C u5.-",N =.+1 51)
150 Rho-. 55
160 C0PM HI, H2
170 D I M A$ [ O:-:0 1 B :-3 0 )
18E0 D l , ,, C 1 : - 0 ,Y la b eL 1 : :30

1'90 D I P,1 ':.' c o r-, r. d '. 1: :30 *: c c, rc' d 1: :30)
200 DIM ::. rid1:30::iqr-id1: 30)

1 JOUBtLE LL. i, LA', L. L , N1,, I, , It

2:30 AS = T hr e .sh, l Id'
240 B E::"E. c eed arc e Pr c,babi 1 i t..
250
u60 L I I
270 .ED I M '1 ate1 $( 1 : L::.:: : cr-d 1: L::.;:
2,-0 DATA -15,- 13,- 1,-9,7,-5,,1,:

90 READ Zlabel$'*$
300 DATA - 15,-1 1,11,-9,-7 5 1 -,9 1 , :,5
:310 READ :.: o r d,' *

20 20

30 Ly:27
340 PEDIM D "labes- ' 1 L',),'VC or,- d, :I L.)
, DATA E-6,E-,F4, .01, 06 E i-, . 01,. 0-1.- -C I.1, . 3.4, .5

-5-, 0 1 -1- . . •

-. 0 DATA .6,.7. ., ,95, 98, . 99
370 DATA . 995, 99 , 999, . 9999, . '.99c99, •999;74

380 READ r 1abe 1 $*
3:-90 DATA I.E-6,1.E-5,1.E-4..011,.002,.005,.01,.02,.05,. .2,.3. .4,.5
400 DATA .6, .77, .-., , .95,.98, .99
410 DATA .995 ,99 q, .9 '9,. ,.9 9 .' 9 9'
420 READ "c ocr ' * d
4:30
440 Nx=I 1
450 R E D I r ' g r i d , M )
460 DATA -15,- 1:, 1 -9,-7,-5,-:3,-I,1,$3,5
470 READ ::gr 1 d' -
480
490 N=27
500 R E D I '1 1 d PI N'
510 DATA 1. E--, I.E-5, 1.E-4, .001,.002, .005, .01,. C.. 05,.1, ., 3..4,.5
520 DATA ., .7 . 8,.Q,.q5,.98.. 9'9
5 0 D A TA '9959 S 99 ' , . .. 999 , . 999999
540 READ Y'gr 1 d' ,
550 I
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560 FOR =1 TO Ly
5 7 c --- r -i I F N [ '1 h i K c o C. c r d I i

5S0 NE.::T I
590 FOR I 1 TiO N:.)
600I ''r iid I 'FNIr,.p'hi KYgr NI It gr
610 NEi:':: T I
6:0 2Y 1 =Yg r. i d 1
6:3 0 ) ",g r i d N''
640C GINIT 1c* H..... '40. VERTICAL PAPER
650 PLOTTER ,-; 505," HPGL"
660 PRINTER I' 505
670 LIMIT FLOTTER 5090. i:,1 .0.,0.,240. 1 'G = 2 rori,
680 VIEWPORT 20. 120., 19., 1:32.

9 IENPORT 22. , 39. , 9. 122. TOP OF PAPER
700 v'I ENPIORT P . , 39. , 19. , 62. BOTTOM OF PAPER
71 0 W I N DOW ::, I :.:2, ,Y-
72 PRINT "V'2

0 FOR I= TO N>::-
74I rMOVE :Xgr i d" I Y I
7 I ['RAN ,:::gr. i d,:: I ),

6 -i NEXT I
7 fL FOR 1=1 TO Ny

H cl MOVE XI , Ygr- i dj I
79ri DRAW X2 , ''gr i I )

; 01U NEXT I
A1 PENUP

820 CSIZE 2.:3, .5
LI-: LORG 5

S:' 4 0 Y=", I - ':Y 'Y -Y 1 02. -,.-
8 5-,5 FOR I=1 TO L::<
:-u60 MOVE X: cord , I : '
87 L LABEL :: 1 .be 1 S K I

L: N E. T I
40 C '.-I Z E :3.,. 5

-1HL MOVE .5 .: 1 +::- 1, I-. 06* Y2-'1
910 LABEL A$
-; 2.0 CSIZE 2. ,.5
930 LORG 8
940 ':.=X1 - ( - 1 *. 01
950 FOR I=1 TO L'..-
960 MOVE X, 'c ord I)
970 LABEL abe1 $,: I
90 I'NE X T I
990 LDIR P I,2.

1000 CS I 3E 9
1010 LORO 5
1021 MOVE Xi 1- . 15 2 XI', . +5..Y1-+-2

I00-:(o LABEL BS
1040 PPINT "VS36"
1050 D:.:: X 2 -X 1 : 100.
1060 ['IM p, 1001
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1070 F:P D-=i. Tfl 7.5 STEP . 75 D DEFLECTIOH d
10:-:0 FOP It =L TI 10 0
1090 j=It
1100 Th =:'2-Ii.. -* I i THRESHOLD
1110 ut=r'let so', +Th er,+r h M -gc,'

1120 Tecr'=' a riu 1.,+ Th Th*V r .i qc'..'

110-: Terp: T I IF+ 2 * T h* S R., ar-,u *','ar -l g : :, ho
1 140 1 ig .t =I EL I ,:R Tt:ra .

11501 H 1 C 1 + C:2 * ,1 M t - z -, R s
1160 H = C 2 * g r, at..'
'17 -;.=,= F N S :1 A :
I 180 -. b =F N':; 1

11 -'i PR INT 'FNS:. A, = 4;-; A" FNSI:.., = 4
1200 10 E i:',L E H ..T
12110 tN 2
I1- 220c H=,.. -A :,*. 5
1230 Si cl: la+Sb 5
1 240 H'= I.E 1

1250 T 0O

12E. FOP =1 TO N-I STEP 2

1270 T=T+FNSA A+H*V)
1 2 0 N E':;: T K
1290 S=S+T

1 :3LCL1

1310 ', /=::+T *H*2. 3.
1 :32 0 IF ABSV-Yo)(1.E-9 THEN 1360
13 :30 N=N+N
1340 H=H*. 5
1 -,r 11 C, 'OTO 125 0
1360 Pd=F*,
1:370 IF Pd>. 9999995 THEN 1400
1380 P :. I t ) FN I .ph i A P
1:390 NEXT It
1400 FOR It=0 TO ..J-1
1410 PLOT :<2-D::*It , It
1420 NEXT It
14:-',0 PENUP
1440 NEXT D.
1450 PAUSE
1460 PRINTER H CRT
1470 PLOTTER 505 IS TERMIHATED
1480 END
1490 1
1500 EF FNI ,,,phi :'' AM - 55, 26.2.

1510 Ic ::.:=.5 THEN RET URN 0.
1520 P= IN,: :', 1
15:30 T=-LOG: F
1540 T ='-.I-)F'.': T + T
1550 F= . +T* 1 4 3 7 :+T*,:. 1E9269+T*.0 01A08u
1560 F,= T -':2.515 517 + T ':.,: :3+ T .0 10 2,;-: P).F
156-0 PT 1 1 51THE1570 IF ,:t<.5 THEN P=-P

15 'SO 0 RETURN P
1590 FHEND
1600 I
1610 DEF F :.',
1620 C-O11 H1,H2
16:30 T=. 5*X-X+EHP < H I+H2*>:,
1640 IF T. 100. THEN PETUPN 0.
1650 RETURN E>P,: -T
1660 FNEND
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Table E-3. Simulation - Extreme

10 Ns= 16 . NUMBER OF SAMPLES
DU [ATH 0,. 75, 1.5,2.5,.3. :3.75,4.5,5.25,6.,6.75,7. 5 DEFLECTION d

C, Rs=1. SCALING r

40 Nt =2 2 NUMBER OF TRIALS
50 A$="E-1 75t75- 1-22" FILE NAME

EC Nb= 1000 NUMBER OF BINS
S Me 57=- 7 2 15 E.64902 FOR Vt , LOG OF E::POENTI AL
L S i gra:P I. ''F' .. ) RANDOM VAR I ABLE

2 ni i r, 1 . M I N I 11M 2 YA LI

1 li Zn:5. M A I MUM Z VALUE
1 1 DOUBLE Ns , Nt, Nb, t, K ., J INTEGERS

I DIM P ' I0 00), PI.:10 ,P2K 1000 FP:: -:' 1 P4..ICC ),P5( 1 0U
71 DI[M P6K1000),P, 10010), PK P'1000), 100), P1O IC00), Edf' 1:1 1100)

14rC REFAD DiD1,D iri4,D5,D6,i ,::,r1 ,riO
10 -OLIeaL- S i gri a

i l F 1 . NS

190 i = ( m ,.:- Z up i N N

2i0l F''R t TC' Nt 1 SILAULAT ION
il 1 D
CI FR Ks 1 T' N
2i Vt:LOG-LOGPNI': ' UN-NORMAL IZE RANrDOM A TRIABLE.

4L0 =AI*Vt +AL ZERO MEAN, UNIT 'F'ARIANCE RV
-" 5 SI=SI+V
260 S=2+V*V

NEXT fs
-L M, I 1*F . SAMPLE MEAN

' 'FKI... S2'-N.*M Mc ) *G SAMPLE STAiNDiARD DEVIATION
-:0 ',,'t LOC1 G LO0G RND:,
,10 YA Il* V t + A C

320 F-R-*V-Mc
330 Z= DO+C)-,

340 J= I NT ( (Z-Zr, i n.,.. Dz)
0 IF .T<0 THEN ..TO

E- IF J>Nb THEN J=Nb
I PO : -.=P03 + 1.

-:80 7' D +C / ,
4Ci m=rli ''Sc D

-EI I =INT o. Z-Zm i n)

4L0LI IF 3.<0 THEN J=0

41 Ci IF 5T.:.Nb THEN J=Nb
4 20 PI KJ)=P(I (.J.+1.
430 = [')2+0C' Sc
440 .J= I NT K ( Z-Zti i n .- Dz 1'

45LI IF .T<O THEN J=O

4 60 IF 5.TNb THEN J=Nb
470 P2J>=P2(J.,+.
4:80 Z=: 3+C '. -Sc
490 J= I NT " I.. Z-Zm i r.) - Dz;,
500 IF .3<0 THEN .=0
510 IF !:*..b THEN J=Nb
520 P3,:. j P3( J: + 1.
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5 :3 '= ,t.4+r " '.c

5 40 .JI I N T( i. Z - n 1 r, -/z.

550 IF JO THEN J=O
51,0 IF J Nb THEN J=Nb
-0 4,:P4, '. =P4 * ' j + i
5:'0 D 5+C'
59 lI NT' ' ni r, ' Dz

.iS0 IF J<& THEN J=I
E.jI IF j>Nb THEN IJNb

clI P5' j =P5 .I + 1

6 40 J =I H T f. f 7- Zr i r, :,.1" z

-, i IF .I< L THEH J=O
6bL IF J>Nb THEN J=Nb

670 PE.j . =PC,:. j.) + 1
6:L '',:"1+F

90 1i I NT I - i r ' Dz.
071 IF I 0 THEN 1=0
I 10 IF INb THEN J=Nb
20 p Tj =P'7J'+I

7 4L iINT' 'Z -Z m ntDtz
75 L IF J< L THEN J=0
7 G I IF J Nb THEN JNb

0 PS J P -81J +I

7-I -J I NT' ' niT' z

C10E IF J<O THEN J=O

1- IF T Nb THEN J:Nb
P2 9 J, =P9 J)+ I

LI ' = I O+C
40 J= INT Z - Zr i n D z

L. I IF J THEN T=LI
-I IF I>Nb THEN J=TNb

70 P 10 J' P I J + I

1.0 N E,::T Kt.
9-90 MAT P0=P I Nt
90 0 MAT P1 '..,: Nt

910- A T P2=P 2 , H
9 20 MA T P3=P:3 .it

9:30 M AT P4=P4 .Nt
940 MAT P5=F'5 ' lt
-750 MAT P6=. Nt
960 MAT P?=P 7 -t.
970 MAT PS=Pu.. 'Nt
9::0 Mr AT P9=P9 ,t

99C, MAT P1O=FjI ,Nt
10003 =-0=31= $2: :4:5=3637=3 =39=310=0.
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= Jun 19.:7 14: 18:02

1010 FOR J=Nb TO 0 :;TEP -1
10 17'0 '$0 = +P0 (J)
10 _':1 IF CLI= 0. THEN 1060
1C-' IF 'C.1:=1. THEN 1070
1 tI F ,T F =FN I rit-,ph i :SO) F0 J ) 'hK 20 > r i i n + z l)

l 060 1N E': T I
107 FLIO (' Ti=C
10 3',0 FOR I:Nb TO 0 STEP -1
1090 S1=-1+P IJ)
1100 IF 1=0. THEN 1130
1110 IF S 1.=1. THEN 1140
1 1 0 P I :. = F N I r ph i ('.'2 I
I I7:Ci NEXT I
I i. P I f:. J.f :, : l.

1150 FOR J=Nb TO ' 0 STEP -1
I~~~~ S6 '.' L =-; + P' ,.J ,

11 I IF :;=l. THEN 12 0
1180 IF 1.;2=. THEN 1210

11 .1 P 2 J..: =FN I .. p h i S 32
12 00 NE', T J
12 1l P. ( j 0

12 .. FOR .. =Nb TO 0 STEP -1
1 -, 0 :-3=' + P J)
1 40 IF '-*3=0. THEN 1270
1 .15 IF I THEIN 1280
12 P3( .- = F N I rvph i (: S:3')
12 NE.:XT .J

1 11 FOR J=Nb- TO 0 STEP -1
1 lI0 S4=54+P4. J.:,

1 '-: IF S4=0. THEN 1:340
1 IF '--41=1. THEN 1350
1 _ P4 3 '=FNI n'vph ':,
1 40C NE::T J
I- L P4( J,=0.
1 6 FOR J=Nb TO 0 STEP -1

C, H-=5+P5(. J.'

I IF 35=0. THEN 1410
1 -0 IF 35 =1. THEN 1420
1 iHL0 P5'. .,3 =FN I nuph i ': 5)
14:0 NEXT j
14 0 P5( J '=0.
14 -0 FOR J=Nb TO 0 STEP -1
1440 S S 6=6+P' 6. J )
1 45i IF S6=0. THEN 1480
14P-% IF S6::=1. THEN 1490
1470 F', J =FNIr, phi: '.6
14'3:1) NE:<T J
1490 PIt 3)=0.
1500 FOR =Nb TO 0 STEP -1
1510 57=$:7+P7': J.)
15.20 IF S7=0. THEN 1550
15:0 IF S:_,7 =1. THEN 1560
1540 P7: J =FN I r,vphi ,$7'
155 0 N EX T .
1560 P7(J)=0.
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1570 FOF 1=Nb TO C STEP -1

1580 S8=- =+P:- "'
1590 IF '-=0. THEN 1620

1600 IF S= I. THEN 1630

1610 F' 31= FN I n'},'h '-'

1620 NE:T J

1' LI0 F:, .'=0.

16 4 FOP j=Nb TO 0l 'STEF -1
1650 S9=.,9+P9, I

I-6rl IF $9=0. THEN 1690

167 l IF S9 =1. THEN 1700

1680 P 1 .= Ff I r'.'h1- S

1690 NEKT J
1700 F'9,. =" 0.

1710 F'' =Nb TO 0 T-TEP -I

17 0 1 10+P1 '. "

1 73 IF lIu=0. THEN 1760

1740 IF 1u.=1. THEN 1770

1750 FlO .I:T=FNIi 'phl '.10:'

1760 NEXT J

1770 F'10':J:'=0.
17-',0 FO1'P 3=l TO Nb
1790 Edf ' .)=PO (J:

I :-300 Ed (' 3T+Nb ) =P 1 (J
l,11l1 Edf .;+N~b*2)=P2," r

1'-,20 Edf .3+Nb*3 =P -:' -1

1:-30 Edf ,. 3+Nb*4.,=p4' '

18 4i Edf': J3+Nb5 ,.=P 5 -I

1 850 Ed ' J+Nb*6:) Pr'..I.

1 1-:.6i Edf J+Nb*7):=P7
( - T '

18 7 Edf J+Nb*83:S =P ' -'

18, Edf, .+Nb*9)--P .T

I -9L Edf' J+Nb*10)= PI l .,

1900 NE:T J

1910 CREFITE DAT Atl :96

1920 ASSIGN # TO I

19:30 PR I HT # I ; E f,': +
1940 ASSIGN #1 TO +

1950 PAUSE
1960 END

1970 1

1.9:30; - DEF FNIn w'h 'k: ' AN 5S 55, 26 .2.

1990 IF ::=.5 THEN PETUPN 0.

2000 P=rIN'" .-. ',<'
2010 T=-LOG':P'
2020 T=SOF'(T+T):

2030 = . +T , '1. 4327:: +T*'. . 1-? +26' T .001Tt.0 0 3'

2040 P=T- 2.515517+T ."-+T 02 ' -:5 13+T±.010 -:2: - :' C10P

5 0 IF , .5 THEN P=-P
2060 PETURN P

2070 FrIEND
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Table E-4. Plot - Simulation

10 A ='E-16-75t,-,5-1-2'"
2--0 2r. n-r,- 15.

41 : a =5.

LIC :1:21= 5.

60 Nb:1000
70 ASSIGN #1 TO A
80 READ #1;Edf.*)
90 AS'-;SIGN #I TI0 *

100 DIri Edf' 1' : 11000.:,
110 DIII At[30)]* P.SELI)

120 Ir.1 .-< 1 bel U e 1 1 : 3 C 1 he 1 a I I :
13 l D I r- i :: c oc, r d( 1: ', 0. , o r- d ( I -:0
140 DI M :-ir'id1:30:, " ,Y d i-: I1::30
150 DOUBLE Nb. L.,L,., ii, IK INTE1;ER;
160
1.0 $ T h r e h I
180 BSE:Ex ceed ar ce Pr,bbi r o t'.,"
190 1
200 L I

210 RED I M1 l e I: I : L::- o o rd I: L x:
220 DATA 15-13 -9, -7 -5,3 ,-1, , 3,5
231 RE A D lab 1 * )
240 DATA - 15 1,11 , , -9 -75 -:3,-1, 1, :1 , 5
250 READ :,: , d, *
260 1
270 LY.=27
2 :-' 0 RE D I M, Y, I a be I: S ,.I : W 4 , Y, oo '': I ' I- r" d v: I ., pp)
29 3 DATA E -6, E- 5, E - 4, 111:1 , . OiA2, . 0 1F5 . 01 0 . 2, . 05
3 10 cl DATA I,1,.2,.:3,.4,.5,.-6, .7, . i4'. . 95,.98-,.'99
310 DATA 9'9 5, .'7 ::.'?9 9 .99 9 , .99'9 99, .999 9 9

I320 READ Y I abe 1 ( *
330 DATA I .- E-6, .E-5,1.E-4, . 01, . 002, . 005, . 1,.02,•05
3450 DATA .1, .99,.4, .5,.6,., . 999, . 99 99

• . o ......... ........ ,... ...................... ......... .

u DAA 1 E r. 1 , 14 r cic.oor-

370 I
380 t x11

-: '9 F;E D Il c. g , i d , 1 t. :
4CC rATA - 15,- 13, 11,-9, -7, -5,-3 11, 3,5
4 113 R E A D d gd'
420 I

430 N 27
440 R E II rl 'gr i 1: N
450 DATA I.E-6, 1.E-5, 1.E-4 .001, .002, .005, .01, .02, .05

460 DATA 1, .2,. . 3, .4, .5, .6, .7, ., .9 .95, . 98, . 99
470 DATA .995, . 99:: ,. 999 .9'99,. 9 9999 . '99999
430 READ Ygr d' * d

490
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0c FOR I = 1 TI:' L,
51- ' ,,:r ,' I =FNI-''v Hi": I:ctr j,: I:
520 HE.: I
5.-0 FO' I=1 Ti N,
540 'igr id', I *=FNIr'.:h , "' i, I 
55 0 HE::T I
560 ''1 ,r d, 1
570 72='g 1 , N'
5,:7::l GIHIT 1::0. 240 E PT I - L F'R EP

74 C -iT EP I::. i 5 HF .,L
590 OF'ITTER I 505, "HP';"
600 PRINlTER' II: 505-

610 LIMIT PLOTTER 505,0.,130.,0..240. 13:U = - rum
620 I E W F PT 2- ,12'. 1. .1.

._ Y'IENPF''T 2 ,::5.,5". ,122. TOF CF FAFE

640 ' IEWPIFT 2-"2, :5. 19.. :62. BOTTOr, OF PAFERP
650 W I NDOW 1 , 1,

p ~ ~ FF'l N NT ... "-'660 ',,PRINT

FOR I- i T' t
i-LI r vE ' r 1 , 1 , F1

i-l 'tR0 'AM q ,<gr it, , I :','

Ll NE::.:T I
71 FOR I 1=  T' N,'

72 rl O I, E 1 'g r i d' I
, DRAM , g r i d' I'

4 0 NE:< T I

750 FENUP
i-Al LDI P 0

LI S--I.-E 2. 5
.i LOP; S7 :- I L 0 R IS 5

79 1 ",'=',1- ' ',2-','l :' LI2

Ll - F O F I = 1 TOA L.:
1 L r,1 I-'E , o : '

0 LABEL :: at,1 , I,
L N E::< T I

840 C$IDE -.. ,.5
0 t'l r1-''E .5 -' 1 + ' Y1- 6-' 2 -Y 1

E-:60 LABEL HI
:-:0 CS-ICE 2.-:,.5

:-:90 L =::i- '. '1-i:J

900 FOR I=1 1' LH.
910 MOYE .. , ",', d' I '
920 LAIFEL 1 1 T ' I:,

930 NE: T I
94 0 LDIFF' 1 2.
950 C' IZE J

970 LiE ,D 1 PIS ' :1',• 1+2

980 LAPEL E:l
990 P INT :6"
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100 lz:( Z .,:- Zrm i n)., Nb
1010 FOR I1= TO Nb
1 0-2 0 T=Edf : I .
10.3'0 IF T=O. THEN 1050
1040 PLOT Zri n+fDz*I ,T
1050 NEXT I

1 060 PENUP
1070 FOR I=1 TO Nb
10 030 T=Edf ( I + 1- b
10 90 IF T=O. THEN 1110
1100 PLOT Zr,, i r,+ 1z* I , T
1110 NE'::::T I

1 120 PENUP
1130 K= N b * 2
1140 FOR I=I TO Nb

1150 T=Edf (I+ I'.1

1160 IF T=O. THEN 1180
1170 PLOT Zrf,, tn+Dz*IT
1180 NE'.::'T I

1190 PENUP
120 0 J : = t- , *:,

12 10 FOR I=l TO Nb
1 2220 T = Edf ,' I +K )
1 "31 IF T=O. THEN 1250
1 240 PLOT Zr, r,+Dz* I, T
12150 NEXT I
S12'6S PENIUP
12U K=;Nb*4
129 C, FOR I=1 TO Nt,
12 90 T=Ed f ( I+K'

1:30 0 IF T=O. THEN 1320
1 10 PLOT Zr, i r,+r1z* I T
1:-2 0 NE::T I

1 -'L I P ENH11P13 4U tUF
1 4' 40 V. = Hb,* 5

1 5IC FOR I=1 TO tNb

1 Gl T=Edf':I+ K.
1 70 IF T=0. THEN 1:390
1 :,:i PLOT Zr: 1 r,+Dz* I, T
+N9E0 HE::T I

1430 PEHUP
1410 Kb=t,*6
142F 0OP I I TO tNb

14:30 T=Edf,' I +K V.,
1440 IF T=O. THEN 1460

1450 PLOT "r,i "+riz*I,T
1460 NE:,:'.T I
1470 PENlP
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1480 [=Nb*7
1490 FOP I = 1 TO Nb.
1500 T=Edf ,: I + .,
1510 IF T=O. THEN 15-0
1520 PLOT ,ni r+Dz*I T
15T0 NE::T I
154C PENUP
1550 =Nb*-8'
1560 FOER I=1 TO Ntb
1570 T=Edf I+K ,
158 ul IF T=0. THEN 1600
159 l PLOT Zrn+rz*I, T
1600 NEX::::T I
1610 FENUP
1620 F =Nb*9
16:30 F O:P I = 1 T 0 H b
1640 T=Edf . I+F
1650 IF T=0. THEN 1670

1660 PLOT Zr, 1,+DZ* I , T
1670 NEXT I
160 PENUP
1690 k=Nhb 10
1700 FOR 1=1 TO Nb
1710 T=Edf:I I+K.,
17-20 IF T=O. THEN 1740
17 -:, PLOT .- i, 1 r.+ 11 z , 1T
1740 NEXT I

1750 FENUF'
1 76 PRUSE
1770 FINTER IS CRT
17-: FLOTTER 505 I0- TERMItNATE1I
1790 END
1 800 I

I:I0 DEF FNIrphl ': ,tI'E. 55. 26.2.2-:

1:20 IF .=.5 THEN RETURN 0.

1 F=M I I ',::',, 1 .- : '
I 40 T=-LOG'P
1:-: 5 0 T='F' ' T + T

I S':-0 P= . +T"' 1 . 45 1 7:-::+T - : '::269+ T .0 01 0:
1:-_:0 P'T-, 2.515517+T"':.3:L2-:S-+T. 10:L:: .... F'P

1 0:::O IF :: .5 THEN P=-P
18'0 RETURN P
1 9-0 FNEiID
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Detection Performance of Normalizer for
Multiple Signals Subject to Partially
Correlated Fading With Chi-Squared
Statistics

A. H. Nuttall
ABSTRACT

The false alarm and detection probabilities for a
multi-pulse signal subject to partially correlated fading,
in the presence of Gaussian noise of unknown level, are
derived in closed form. The number K of signal pulses, as
well as the number L of noise-only pulses used to
estimate the noise background power level, are arbitrary.
The power fading is characterized by a chi-squared
distribution with 2m degrees of freedom and a normalized
set of covariance coefficients (Pki1, all of which can be
selected arbitrarily, in order to match an experimental
realization or an actual measured situation. The
performance capability of this processor depends
additionally on the received signal-to-noise ratio.

This study is an extension of NUSC Technical
Report 7707, to cover the case of a nonconstant
threshold. Comparisons of this normalizer with the
earlier results (for L =a0) enable a quantitative evaluation
of the losses incurred by lack of knowledge of the noise
level. The important capability of constant false alarm
rate is achieved by this normalizer.

Plots of the detection probability vs. false
alarm probability are furnished for a variety of typical
choices of the various parameters; however, the multitude
of parameters and cases precludes a comprehensive
all- encompassing compilation of numerical results.
Accordingly, a general program in BASIC is listed,
whereby additional results of interest to a particular user
can be eaaily obtained, once numerical values are
assigned to all the parameters.
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DETECTION PERFORMANCE OF NORMALIZER FOR MULTIPLE SIGNALS SUBJECT

10 PARI[ALLY CORRELATED FADING WITH CHI-SQUARED STATISI[CS

INTRODUCTION

In a recent study [1], the detection performance capability of a

multiple-pulse system subject to correlated fading was quantitatively

delineated. It was assumed there that the noise level was known, so that a

threshold could be set for an arbitrarily specified false alarm

probability. Then the detection probability was evaluated as a function of

the threshold level, the received signal-to-noise ratio, the number K of

signal pulses, and the fading statistics.

Here we will extend these earlier results to cover the case where,

addiLionally, the noise level is unknown and must be estimated on the basis

of a finite number L of noise-only samples. The same approximation

technique that was presented in [1] is used to determine the detection

probability of this normalizer system. The reader is referred to [1] for

additional background, motivation, interpretations, and related references.

For the sake of brevity, we will employ the same notation and presume that

the reader has complete familiarity with the earlier material and

development.
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PROBLEM DEFINIIION

We will couch the problem in a particular setting, one with obvious

appeal and application; however, it should be obvious how to extend this

setting to a more general one, particularly in light of the arbitrary fading

covariance coefficients that are allowed in the analysis.

Suppose a sequence of K tone bursts at a common center frequency are

transmitted, as depicted in figure 1. Each rectangular slot symbolizes

r-i ci €j

r -- I slots

II M

Figure 1. Time-Frequency Occupancy Diagram

a tone of duration T seconds and approximate frequency bandwidth 1/1

Hz. These bursts may be abutting in time or may be arbitrarily separated in

time by several multiples of TI. At the receiver, K narrowband filters of

bandwidth I/TI Hz are sampled at the times of peak signal output (if

present) and their squared envelopes are summed. Depending on the time

separation between pulses, tI signal strength may fade considerably; the

2
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exact amount and frequency of the fading depends on the distribution of the

fading and the covariance of the fading amplitude of adjacent (as well as

separated) pulses.

It is presumed that, during a single tone of duration TI seconds, the

fading is essentially constant, resulting in a constant amplitude scaling

and phase shift applied to the pulse. The time separations between pulses

in figure 1 are arbitrary, thereby allowing for an arbitrary degree of

correlation between the fading factors applied to each pulse. PoJe .56RS

Jo establish a reference against which this sum of K matched filter

outputs can be compared, for purposes of deciding on the presence or absence

of signal, a group of f- nonoverlapping noise-only slots, located arbitrarily

in the time-frequency plane, are also energy-detected and summed. For very

large I, this noise reference is very stable, and performance approaches

that predicted by [1]. However, for moderate values of L and for small

false alarm probabilities of interest, it is important to know how much

degradation in performance is incurred by being forced to use this noisy

reference.

An obvious implementation of the processing implied by figure 1 is to

employ fast Fourier transforms. The L reference bins can then be an

arbitrary collection of time and/or frequency bins. However, L cannot be so

large that nonstationary and/or nonwhite noises cause their own kind of

errors in noise power estimation. The tradeoff between these conflicting

requirements will be assessed quantitatively in this investigation.

3
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NORMALIZER PROBABILITIES

DEFINITIONS OF PARAMETERS

Very heavy reliance will be made here on the basis that was set up in

[1]. Thus we have the following fundamental parameters of the detection

procedure (the immediate references in tables 1 and 2 are to [1]):

K, number of potential-signal pulses added, (figure 1 and A-i);

m, signal fading parameter (power-scaling is chi-squared with 2m

degrees of freedom), (13);

{Pkj}' normalized covariance coefficients of signal power-scalings

q k ' (15);

average received signal enerqy per pulse , (9);
N, single-sided received noise spectral density level

L, number of noise-only pulses added.

Table 1. Fundamental Parameters
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In addition, there are two very useful auxiliary parameters that found

frequent use in [1]:

K

K -K- kj equivalent number of independent signal pulses, (10);

kj=l

N, m K = a summary parameter describing the distribution ofe

the sum of power scalings,(A-24) and (A-29).

Table 2. Auxiliary Parameters

None of the parameters, m, Ke N, noed be integer. Also, N can be larger

or smaller than K, the number of signal pulses.

PROBABII IIIES FOR KNOWN NOISE LEVEL

lhe probability density function of the sum y [1; (A-ll)] of the K

signal envelope-squared samples is given by [1; (B-4)]

p (u (- - u / a ) u K- 1 N ( )
K-N N IF ; K; u a for u >0 ()

a b F(K)

where [1; (A-32),(B-3),(B-7)]

22 T1 K
a , b z-2cn (1 +- R) , R - N N

0

]he exceedance distribution function Q (u) of output sum y is given by
Y

several alternative forms in [1; (B-9),(B-1l),(B-13)]. For a fixed

threshold (known noise level), the detection probability is

5
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PD Q Y(-A,R,N,K)

1 N)(R\n ulEl(~ (3)
(I + R)N - +-R L K-I+n ' 2a2n

and the false alarm probability is [1; (B-10)]

PF = EK-I(A) , (4)

where we define the exceedance distribution function

En (x) exp(-x) e n(x) , (5)

and

n

en(x) = 2_ xJ/j '  (6)

j-O

is the partial exponential [2; 6.5.11]. lhe results in (3) and (4) should

be used for I ob, that is, for known noise level.

NORMAl MER RAIIO

From this point on, I. is presumed finite. Suppose a noise level

estimate, yo' is obtained, based upon I- indppetdent me3surements of

noise-only bins. It is assumed that the average noise level in these I bins

is the same as in the K potential-signal bins, but that this noise level is

unknown. If we let

6
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= y(K,E 1/N0 ) (7)

denote the sum of K signal bin outputs with average signal-to-noise ratio

F I/N, then

Yo = y(L,O) (8)

is the corresponding sum of L noise-only bins. Now define ratio

- y(KEI/N0 )

YO y(L,O)

for sets of K and L pulses, respectively. The noise contributions to the

total of K + L outputs are presumed independent of each other; however, the

signal fading factors amongst the K signal outputs are correlated to an

arbitrary degree. We are interested in the distribution of this normalizer

ratio,

When signal is absent, the ratio v in (9) is independent ot the absolute

level of the received noise; therefore, we can expect the normalizer to

achieve the important capability of constant false alarm rate. That means

that a specified false alarm probability can be achieved without knowledge

of the average noise power level.

]he quantities y and y are the sums of K and L squared-envelope

,amples, respectively, and are not the averages of these sampled

quantities. In terms of the sample-averagc quantities, we could define a

slightly different normalizer ratio

7
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y/K I
yo/L K

It then readily follows that the cumulative distribution function of random

variable ' is

P.(u) = Prob(V < u) = Prob < L ) , (11)

in terms of the cumulative distribution function of ratio v in (9). Thus, a

simple scale factor change allows for consideration of the alternative ratio

When we plot the detection probability versus the false alarm

probability, that is, eliminate the threshold, the same performance

characteristics result for random variable v as for t'. Accordingly, we will

not use or refer to 'V or P_(u) any further, but concentrate solely on
)

normalizer ratio u, given by (9).

NORMALIZER DISTRIBUIIONS

The characteristic function of noise--only random variable y can be

found directly from [1; (A-13)] by setting A to zero and replacing K by I:

-L 2
f (I) = (1 - i a) , a =- (12)

Yo n
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ihe corresponding probability density function of yo is

L-l

p (u) u exp(-u/a) for u > 0 . (13)
YO r(L) a

Ihe exceedance distribution function is

QYo (u) = Prob(y ° > u) =-EL-l(u/a) for u > 0 , (14)

in terms of the functions defined in (5) and (6).

ihe cumulative distribution function of ratio v in (9) is given by

(since y > 0)

P (u)= Prob(u < u) = Prob(-to < u) = Prob(y < uyo) =

CO0

f dy pI(y) dx pyo (x) f dy p Y(y) Qyo (Y/U) =

0 y/u 0

exp---- /a- K-1 ) {-a -

STdy bN ---- iF (N; K; y - ELl (15)
0 aKN b N(K) 1I

for threshold u > 0, where we used (1) and (14). We now expand EL-1

according to (5) and (6) and integrate term-by-termto obtain [3; 7.621 4]

[ u -1 1 uP__ (u K (N K +A ; K; - ' -- ). (16)(b) ~) ! (I1 1

but from (2),

9
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a 1 1K
b l+R' R N N' (17)

0

where the parameters involved are described in tables 1 and 2. Making these

substitutions in (16), theye-follows for the cumulative distribution function

of random variable v,

P(u) = Lx-()_ (K F , K +,; K; R (18)
1 - uy I. + R 1 + u)

S (I + R)N  0 (I u (8

An alternative more useful form is obtained when we use [2; 15.3.3]:

/ Ke\ L-1 -

____' 1 +- /4R R R 1 -U)
P (u) ( u u)u+ R F K -N; K;l+vu  u)K :+I! u + R.- + R I u

(19)

for u > 0. This result is very attractive since the negative integer

argument, -I, in the hypergeometric function causes termination of the

series at A terms. Thus, (19) is a closed form (albPit tedious) for the

cumulative distribution function of u, involving a finite number of

elementary functions.

It should be noticed that the absolute noise level a2 does notn

appear in (18) or (19). (The cumulative distribution function for

alternative normalizer ratio V given by (10) can now easily be found by use

of (11).)

10



TR 8133

COMPARISON WIIH EARLIER RESULTS

lhe result (19) for the cumulative distribution function of normalizer

ratio v, operating in a partially correlated fading environment, is an

approximation, having been based upon a characteristic function fitting

procedure explained in [1; (A-24)-(A-28)]. Nevertheless, (19) is identical

with the exact fading result for a related normalizer problem; namely,

agreement with [4; (25)] is achieved under the following identifications:

TR 4783 Here Interpretation

u threshold

M K number of signal pulses

N L number of noise-only pulses

u + 1 N m Ke, table 2

E1K
p R N N ' (2)

0

Table 3. Identification of Variables

lhe identity of + I 1 with N is made by comparing [4; (24A)] with

[1; (A-29)]. The final identity of j with R utilizes [4; (24B)] and

11; (9)]:

RT TINo l KINo
- - R (20)+ IN N

where the arrow indicates transferrance from [4] to (1].

11
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The approach in [4] proceeded as follows: the detection probability

for nonfading signals in all the bins depended only on the total received

signal-to-noise ratio RT. When RT was assigned the fading probability

density function [4; (24A)], the average detection probability in [4; (25)]

resulted. For the special case of fading parameter u = M - I there,

numerous graphical results were given in [4; figures 1-36].

The current results here are more general, in that they allow for

partially correlated fading (through parameter K e) and a more general

power-fading model (with 2m degrees of freedom). This means that N = m Ke

here is not restricted to be equal to the number of signal pulses, K, but is

arbitrary. Thus the current numerical results will significantly augment

and extend those in [4]. If N = K here, then R - E/No - signal-to-noise

ratio per pulse, and (19) reduces to [4; (15B)], for which many numerical

results were given in [4; figures 1-36].

SPECIAL CASES

For m = 1, which corresponds to Rayleigh amplitude fading, and for

Pkj = 
6kj' which corresponds to uncorrelated fading, then Ke K, N r K, and

we get from (19),

Pu)-( u )ZT ( - , (21)
(u) + u + R 2 (K)

in agreement with [4; (158)).

On the other hand, if R = 0, then (18) and (19) both reduce to

12
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L-l

P(°).u)(K + u ,(22)v =0 ) (1 + u)

which is equal to I - P where PF is the false alarm probability.

2
Since noise level a is not involved in (22), threshold u can ben

selected to realize a given PF' once K and I- have been specified. This is

a quantitative verification of the expected constant false alarm rate

property of the normalizer.

Finally, in the special case of one signal pulse, K r 1, and Rayleigh

amplitude fading, m = 1, then Ke  1, N = 1, R = E/N , and (19) yields

Pv-u) - l- u - R +( u + - (23)

lhat is,

1 - (u) + R) (24)

which agrees with [5; (6)1 when we make the identifications (from there to

here) of N -) L, I/N - u, y -* R.

RECURSION FOR CUMUIAlIVE DISTRIBUl[ON FUNCTION

let the hypergeometric function appearing in (19) be represented as

fol lows:

H (F(-, K - N; K; x) (25)

13
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Then

HO(x) = 1 , (26)

while (25) has the recursion [2; 15.2.10]

HA(x) = [K + 2-2 +(N - K + 1 -()x] H xl(X) - (K +e - 2)(l - x)Hk 2(x)

for > 1 , (27)

where we define H-1 (x) = 0. In terms of (25), the cumulative distribution

function of v in (19) becomes

P uu 1 + R R u
(l+ u ) + U + R+ R 1 + U) (28)

This form, in conjunction with recursion (27), was used for all the

numerical results here, for L finite. The parameters appearing in (28) have

all been explained in tables 1 and ?. The explicit dependence on the

fundamental parameters is indicated below:

Ke = Ke(K, fPkj})

N = N(m, K, Pkjl)

R(E1/No , m, K, ?PkjJ) (29)

In addition, the cumulative distribution function in (28) is a function of l

and threshold u.

14
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DEIECIION AND FALSE ALARM PROBABILIIIES

Ihe detection probability is given by

PD = Prob(v > u)R > 0) = 1 - P U), (30)

where Pv(u) is available in (28). The false alarm probability is

P = Prob(v > u R = 0) = 1 - P(0)(u) (31)
F uV- -(1

where P(o)(u) is available in (22). By allowing threshold u to vary

over a wide range, PD and PF values can be obtained and plotted against

each other, resulting in the standard receiver operating characteristics;

the threshold is thereby eiiminated from the plotted outputs. Programs for

plotting PD vs PF' both for L finite as well as infinite, are listed in

appendix A.

15
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GRAPHICAL RESULTS

Due to the multitude of parameters appearing in this investigation (see

tables 1 and 2), it is impossible to give a comprehensive compilation of

encompassing numerical results. Considering just the covariance

coefficients - 1K) for the moment, complete specification requirestPkj ,

assignment of K(K - 1)/2 values to these quantities; to circumvent this

difficulty, we consider numerically, here, only the very special case of

exponential correlation, for which

1k-il
Pk- J p for 1 < k, j < K , (32)

and look at a couple of particular values for p. Our approach here, of

necessity, is to give some representative sample receiver operating

characteristics and a general computer program in BASIC, whereby additional

results can easily by obtained once the user has specified all the

particular values of interest in his application. This program allows for

arbitrary covariance coefficients, {Pkjl' and is not limited to the

specific example (32).

The particular cases we will investigate are as follows:

K 1, 2, 4,

L 16, 32, *,

m .5, 1,

p 0, .5 (33)

16
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All possible combinations of these four fundamental variables lead to 30

pleLs, which appear below in figures 2-31. (There are only 6 plots for

K = 1, not 12, because the value of p is irrelevant for K = 1). The curves

are indexed by the per-pulse signal-to-noise ratio, E I/No in dB, The

false alarm and detection probability pairs range from (poor quality) pair

(5,.0) up to (high quality) pairs near (E-l0,.999).

Ihe number of signal pulses, K, is limited to the low values 1, 2, 4,

because these seem to be the cases of most immediate practical use. The

number of noise-only samples, L, is not evaluated for L = 64 because of the

proximity of the results to those for L rc; conversely, results are not

presented for L 8, because a severe degradation in performance occurs, that

probably cannot be tolerated. The fading parameter value m 1 1 corresponds

to Rayleigh amplitude fading (exponential power fading), while m .5

corresponds to a deeper more-damaging form of fading. The correlation

coefficient p - 0 corresponds to uncorrelted (independent) fading, while

p = .5 allows for adjacent (equispaced) pulses in figure 1 to have some

degree of dependent fading.

An explanation of the initial result in figure 2 follows: for K 1,

m : 1, I = 0 (known noise level), the detection probability is plotted versus

the false alarm probability for values of the latter between 1E-1O and .1.

]he value of the per-pulse signal-to-noise ratio, Fi/N in dB, varies over

the range 6, 8, 10, .... 42, giving detection probability values covering

*Ail the figures are collected together after the Summary section.
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the range .01 to .999. The only difference in the accompanying pair, figures

3 and 4, is that L is reduced to 32 and 16, respectively.

The results in figures 5 through 7 correspond to the worst cases

considered here. Namely, there is just one (fading) signal pulse, and m is

.5, which means a very deep fading medium; see [1; figure 2]. The values of

signal-to-noise ratio required for L 7 16 in figure 7 are so large as to be

physically unrealistic, except for the poorer quality region.

On the other hand, for K = 4 signal pulses, Rayleigh amplitude fading

(m = 1), and uncorrelated fading (p = 0), the results in figures 20 through

22 are very encouraging, being physically reasonable over the whole range of

plotted values. But when m is decreased to .5, and p is increased to .5,

the results in figures 29 through 31, still for K = 4 pulses, indicate

substantially increased signal-to-noise ratio requirements at the higher

quality end of the performance region.

An alternative method of presenting the graphical results, which

accounts for the losses incurred by not knowing the noise level, is to plot

the required value of E IN vs I., for various values of the remaining

parameters and for specified performance quality in terms of PF and PD"

Two such cases are illustrated in figures 32 and 33. They show that the

cost of not knowing the noise level is not severe for the high false alarm

probabilities, but is quite significant for the lower more-desirable false

alarm probabilities. For example, in figure 33 for K ? signal pulses, the

signal-to-noise ratio must be about 1.5 dB larger at IL 10 noise pulses than

18
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at I = 100, when P .01. However, if we want to operate at PF = 1E-lO, the
F r

increased signal-to-noise ratio requirement is about 6 dB per pulse. The

numbers are comparable for the K = 1 results in figure 32.

The asymptotes for large L in figures 32 and 33 can be found in some

cases from earlier results in [1]. For example, reference to [1; figure 8]

for K = 2, p = .5 gives E1/No = 16.8 dB, while PF l 1E-6, PD .9, m = 1.

Comparison with figure 33 here reveals that the performance requirement is

virtually at this level by the time that L 100.

19
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SUMMARY

Although figures 32 and 33 are very informative, allowing for a ready

assessment of the losses incurred by using a finite small value for I, the

number of noise-only pulses, they also illustrate the voluminous compilation

that would be needed for a thorough numerical investigation. For example,

if: detection probabilities PD were of interest for values .5, .9, .99,

.999; number of signal pulses K for values 1, 2, ... 10; fading parameter

m for values .5, 1, 2; and fading correlation coefficient p for 0, .5, 1;

this would require a total of 4*10*3*3 = 360 figures. The approach here is

instead to present some representative receiver operating characteristics, in

figures 2 through 31, from which information similar to that in figures 32

and 33 can be extracted, and to list a general program for the generation of

additional receiver operating characteristics for whatever cases may be of

interest to the user.

Some related work on the performance of a log-normalizer subject to

Weibull or log-normal inputs has been published by the author in [6];

however, no fading was allowed, and the number of signal pulses was limited

to K = 1. In a different vein, the performance of an or-ing device

operating on the output of an incoherent combiner of multiple pulses was

analyzed in (7]. These works augment and complement the analysis conducted

here.

20
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APPENDIX A

PROGRAM LISTINGS

There are two programs listed in this appendix, the first for L finite,

the second for L infinite, where L is the number of noise-only pulses used

to establish a reference. The fundamental parameters K,m,L are input in

lines 20, 30, 40, while p is input in line 1400. The particular values of

E1/N (in dB) that are of interest are input in lines 340 and 350.

Provision is made for 20 PD vs PF curves in lines 60-90; this can easily

be changed to accommodate other cases.

The false alarm and detection probabilities are available in lines 1000

and 1130, respectively. The detection probability utilizes R and N as input

variables; see table 2. The particular covariance programmed in lines

1390-1430 is exponential, but this, too, can easily be generalized.

To save space, the complete program for L infinite is not listed.

Rather, just the essential false alarm and detection probability routines

are listed at the end of the appendix; these are obviously not functions of

L. The changes required to accommodate this case of infinite L should be

obvious.
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10 1GENERATE PD-VS-PF NUMBERS FOR FINITE L
20 K=4 NUMBER OF SIGNHAL PLILSES ADDED, 1:i
3 0 M-s= 5 FAD ING PARAMETER, nf '.2rn, UGH,
40 L=16 1 NUMBER OF NOISE PULSES ADDED, L
50 DIM U( OO0)

pc COM Pt> 100), Pdl t.100), Pd2( 100), Pd3( 100 , PdJ4'.lOO', PdS 10.'1
70 COM PdG( 100),Pd-( 100), PdS( 100), Pd9( 100) ', PdlO('100),Pdl 1(100)

SOCOM Pdl2(100),FPdlS(100) ,Pdl4( 100), Pdl5. 100', Pd1l'. 100), Pdl 7>100.
90o 0GM PdlS'z 00), Pd19( 100>, Pd2O' 100)
100 DOUBLE K,L, 1.1 INTEGERS
110 S=o.
120 FOR I=1 TO K
130 FOR JWi TO K
140 55S+FNCoy (I ,.3) NORMAL IZED COVAPI ANCE COEFF IC IENTS
150 NEXT J
160 NEXT I
170 K e=K * K/S EQU IVALENT NUMBER OF INDEPENDENT FADES
180 N=Ms*Ke N ma Ke
190 U=0.
200 U=UtOl
210 PE=FNPf(U,K,L)
220 IF Pf>.1 THEN 200
230 U1=MAX2J-.0I,.OD)
240 U=U+.01
2,50 Pf'=FNPf(U,K-, L)
4.b0 IF PfIE-10 THEN 240
270 U2=U

20 Delu=(U2-U1).7-100.
C-0 FOR 1=0 TO 100
:00 U=U1+Delu*I

310 U(I.'=U THRESHOLD VALUES
'0 P9'.. =FNPf(U,K,L) PROBABILITY OF FALSE ALARM
3:3 NEXT I
: l4 0 FOR J=1 TO '20

Elc~b2*+ SINLT-O$ RATIO PERPUSE/oCd)36 Elc'10.'(.*Elriodb)OI$

370 R=E Inro*K/-N
380 FOR 1=0 TO 100
390 U=Ut:I)
400 Pd=FNPdU,R,N,K,L) IPROBABILITY OF DETECTION
410 IF J=1 THEN Pdl(I)=Pd
420 IF J=2 THEN Pdt(I,=Pd
430
440I
590 IF J=19 THEN Pd19UI)=Pd
600 IF J=20 THEN Pd2OcI)=Pd
610 NEXT I
620 NEXT J
6:30 FOR 1=0 TO 100
£40 P( I )-FN Invphi Pf ( I
650 Pdl (I )=FNlnvphii(Pd1 cl))
1660 Pd2 (I )=FNlInvpht,(Pd2 ()I
670
680
830 Pd19( I )FNlnvphi (Pdl9( Ifl
640 Pd'2O0( I )=FN Invphl1tPd2 ( I)
850 NEXT I
860 CALL A
870 END
880
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-90 D EF FM Inv, h i X A MS 55, 26. 2.2
900 IF .=.5 THEN RETURN 0.
'910 P=IN(X, 1.
920 T=-LOG(P)
930 T=SQR(T+T)
940 P= i. tT* (* I. 43278S+T* . 89201-9+ T*. 001:308 * 1

950 P=T-(2.515517+T,(.802S53+T*.010 : 23), . F'
960 IF X.5 THEN P=-P
970 RETURN P

980 FNEND
990 I

1000 DEF FNPf'(IUDOUBLE K,L) I FALSE ALARM PROBABILIT"'Y
1010 IF U<=0. THEN RETURN 1.
1020 DOUBLE Li INTEGER

1030 UI=U+1.
1040 Kl=K-1
1050 S=T:EXP(K*LOG(U...JU1))
1060 FOR Ls=l TO L-1

1070 T=T*(K I+Ls)/.(LS*U1)
1080 S=S+T
1090 NEXT Li
1100 RETURN I.-S
1110 FNEND
1120
11 30 DEF FNPd(U,R, N,DOIUBLE K,L' DETECTION PROBABILITY
1140 IF U<=O. THEN RETURN 1.
1150 DOUBLE Ls INTEGER

II60 UI=I+1.
1170 RI=R+I.
11"D U2=U-"U 1
1190 Ru=RI+U
1200 K2=1<'-2

12 0 Nk = N-K+ I
I-- C,0 ,=R I /Ru
1230 ', = U2* R-"R 1
1240 X=X- 1.
1 25 S=T =EXP ( K*LOG '. U2 +N* LOG U 1 Ru .)
1260 Ho=O.
1270 H=I.
12c=:0 FOR Li=1 TO L-1

1290 T=T*Y
1300 J=K2+L s
1310 A= ( ' J+L;+ ( t|-L. * )*H+ J.*1*Ho )' L
1:320 Ho=H
1 3:30 H=A

1340 S:S+T*H
1350 NEXT Li

1360 RETURN I.-S
1 370 FNEND

1380
1390 DEF FNCov:.DOUBLE 1,J)
1400 Rho=.5 N NORMALIZED COYARIIANCE COEFFICIENT
1410 IoJRho"RBS d- . E:::PONENTIFAL BEHAV"IOR
1420 RETURN Co,

1430 FNEND
1440
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1450 , SUB A I PLOT PD V- PF ON NORMAL PROBABILITY PAPEP
1461 COm F'f ,.*F 1* Pd2 ,Pd:3*. Pd4', Pd'5(*'

1470 conl P.61 :, 'Pd>, Pd> k '* ,, Pd9' * i , F '.10 Pd 1 '.* )
14:'0 CON'1 Pd!2 Pdl 3 *),Fd14'*, Pd15* F'dI6k* ,Pd 17*)

1490 rCON Pdlb,*I',,Pd19(*),Pd20':;*)

1500 DIM A$[30]BS [30
1510 DIMi X1 abe 1 ,1 : '0), YI abe l 1:30
1520 DIN Xc oord I : :30.), c oord'.1: 30
1530 DIN Xgri d(1: 30., Ygr i d 1 : 30)
1540 DOUBLE N,L,.,Ly,Nx,INy, I TrNTErERS
1550
1560 A$" Probab i 1 it cf F-al se Al arri,"
157I B$="Prc babi 1 i t, cf Det c.t 1, or,"
1580 1

1590 Lx=12
160 0 PED I M v I .bc 1 S : 1 -" L::),: c rd .1: L
1610 LIaTA E-1O,E-9,E-8, E-7,E-6,E-5,E-4,E-3, .01, .0n2, .05,.I
1620 READ ,'label$'.*)
16'30 DATA IE-10, 1E-9,1E-8,1E-7,1E-6,1E-5,1E-4,.001,.01,.02,.05,.1
1640 READ Xcoord(*)
1650
1660 Ly= 18
1670 REDI1 1 all$1:Ly),Yccord:1:
1684 DATA .01,.02,.05,. .2,.3,.4,.5,.6,.7,.8,.9
1690 DATA .95,.98,.99,.995,.998,.999
1700 READ Ylabel$(*)

1710 DATA .01,.02,.05,.1,.2,.3,.4,.5,.6,.7,.8,.9
1720 DATA .95,.98,.99,.995,.998,.999
17:30 READ Yc oord(*)
1740
1750 Nx=14
1760 RED I V r gr i d 1: N. )
1770 DATA 1E-10,IE-9,IE-8,IE-7,IE-6,IE-5,IE-4
178:'0 DATA .001, .002, .005, .01, .02, .05, .1

1790 READ '<grid'*)
1800
1810 Ny=18
1:320 RED 1 gt i , I : td( 1:
1830 DATA .01 ,.02,.05,.I,.2,.:3,.4,.5,.6,.7,.8,.9
1:-:40 DATA .95,.98,.99,.995,.998,9
1:-50 READ Ygr id,*
1860

1870 FOR I=I TO Lx
1830 Y,,:ord( I ) =FNIr vphi (..Coord( I))
1:390 NEXT I
1900 FOR I=1 TO L'
1:410 Y.:oord( I )=FNIri vphi (Ycoord'( I
1920 NEXT I
1930 FOR I=1 TO Nx
1940 Xgr d I =FNIrvph (Xgr I )
1950 NEXT I
1960 FOR 1=1 TO Ny
1970 Ygr i d (I) =Ft I r'ph i (Ygr id ,:I) )
1980 NEXT I
1990 Xl=grid(l.,

2000 X2 =gr i d 0. ')
2010 Yl=Ygridt I
-020 Y2=Ygr i dN)
2030 Scal e= (Y2-Y 1I .,.)' X2-X 1)
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.040 GINIT 200. 260. VERTICAL PAPER
- "HPGL .

2050 PLOTTER 1'- 505,
2060 PRINTER 1' 505
2070 PRINT "V'4
20:.30 LIMIT PLOTTER 505,0. ,200. ,0., 260. 1 GDLI = 2 rn,
209;0 VIEWPORT 22.,85.,19.,122.
210 0 VIELPORT 22 85. ,59. 122. TOP OF PAPER

2-110 VI ENPOR T 22. 85., 19.,2. BOTTOM OF PAPER
W I NDOW 1 , 21 , Y I , ," 2

Z1 0 FOR 1=1 TO l:
140 MOVE Xgr i d k I I,

2150 DRAW Xgr i d( I', ,2

160 NEXT I
2170 FOR I=1 TO N,,

1 80 MOVE .X1, 'jri d i. I
1 0 DRAW X2, "'(gr i d ' I)
.,00 NEXT I

2210 CSIZE 2.3,.5
20 LORG 5

2230 Y=Y-(:72-,"1 )*. 02

C40 FOR 1=1 TO Lx

10 MO'/E X c or -D I ), Y
0 LABEL :-'labe14I .,

Z'70 NEXT I
- 0 CSIZE :3.,.5
22 MOVE .5r +:2),Y1-.06*(",2-Y1)

-1300 LABEL AS

10 MOVE .5 : m +Xv'2 ' I- 1-r "2-1
0 LABF.EL "F ig ur :31. ROC. f or K=4, r=.5, =.5, L=16"

3:3 C, CSIZE 2.:3,.5

2340 LORG G
5" 0 :x:... 1-I- 1 * 0

E. 0 FOR I = TO Ly.

237 0MOVE ,,,c oc, rck I d
2:C LABEL Y1 kbE 1$ (I)

2390 IEXT I
2400 LDIR PI .'2.
2410 CTSIZE 3.,.5
2420 LORG 5
2430 MOVE .I-. 151..,2-'1, .5* ( 1+Y2
Z440 LABEL B$
450 PENUP
460 PLOT Pf'.* ,Pd1
470 PENLIP
480 PLOT Pf'r, ,P d7*)

490 PENUP
25u0

510
PLOT P(* d',d1' *)

2830 PENUP
,'840 PLOT Pt.* , Pd2O*)

50 PENUP
P,60 PAUSE

,870 PRIN4TER I- CRT
o80 PLOTTER 505 IS TERMINATED

2'890 SUBEND
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10 DEF FNPf Thr, DOUBLE K FALSE ALARM PROBA:ILITY
20 DOUBLE J INTEGER

30 S=T=EEX P (-Thr
40 FOR .I=I TO K-I
50 T=T*ThrJ
60 S=S+T
70 NEXT 3
so RETURN S
90 FNEND

100 1
110 DEF FNPdt Thr, R,N, DOUBLE I TR 77:7, FiPP. C-I
120 Error=1.E-10
130 DOUBLE Ki,KLs INTEGERS
140 Et=E',.xP(Thr. )
150 K1=V-I
160 N1=N-1.
170 RI=I.+R
I10 O=R'R1
190 E =T E1=I.
.00 FOR Ks=l TO Ki
210 Te =Te.*Thr."Ks
220 E=E+Te
230 NEXT Ks
240 S=B=MFX(Et-E,0. )
250 T=1.
260 FOR Ks:1 TO 1000
270 Te=Te*Thr +K)
280 B=MAX(B-Te,0.')
290 T=T**(N1 +K0+ /K
300 Pr=T*B
310 S=S+Pr
3120 IF ABS'lPr"<Error*BS<S THEN 350
330 NEXT Ks

340 PRINT "1000 TERMS A T:; K;N; Thr; R; PrS
350 Pd= I. -EXPK-Thr-N*LOG(R1 ) *S
360 RETURN Pd
370 FNEND
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ABSTRACT

The false alarm and detection probabilities for
a processor that incoherently combines M matched filter
outputs and then subjects these summed quantities to
or- ing amongst N channels are derived for general M, N,
and signal to- noise ratios. A probability of correct
detection occurs only when the signal channel output
exceeds a threshold and all other noise channel outputs.
Receiver operating characteristics are plotted for the 40
possible combinations of M=1(1)10 with N=I, 10, 100,
1000, for signal to noise ratios ranging over values
diverse enough to cover false- alarm, detection probability
pairs from (.01,.5) to (1E- 10,.999). Also, the required
signal- to noise ratio to realize specified false alarm and
detection probabilities are plotted versus N, for several
values of M.

The signal to noise ratio parameter employed is
related to the total received signal energy to Gaussian
noise spectral density ratio. This allows for consideration
of arbitrary fractionalization of the received signal
energy and for investigation of mismatched as well as
frequency offset and time desynchronization, if desired.
Programs for all procedures are listed.
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OPERATING CHARACTERISTICS FOR INDICATOR OR-ING

OF INCOHERENTLY COMBINED MATCHED-FILlER OUTPUTS

INTRODUCTION

When multiple pulses are transmitted, in an effort to detect the

presence of a target, the multiple echoes should be optimally processed and

combined before a decision is reached. For received signals that are

deterministic, except for independent random phases between pulses, the

ideal processing consists of matched filtering, envelope detection, and

combination according to a n I rule [1; chapter VII, (1.7)]. Since the0

receiver input signal-to-noise ratio must be known in order to apply this

rule, the slightly suboptimum alternative of combining (adding) squared

envelopes is often adopted [1; ch. VII, (1.12)]; this is the situation to be

considered here.

In addition, if the target has some movement in the radial direction,

(:dusing a Doppler shift of the echoes, a search must be conducted over

frequency at the receiver, in order not to miss the received signal energy.

For example, suppose a series of M tone bursts at a common center frequency

are transmitted and echoed off a moving point target. Since the received

center frequency will be unknown, groups of matched filters will be

necessary, in order to cover the expected range of frequency shifts. Fach

one of the possible received center frequencies that must be processed is

called a channel.

1
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In figure 1, a block diagram of the processing in the n-th channel is

depicted. The M narrowband filters in the n-th channel are indicated by

impulse responses {hnm(t) . They are followed by detectors which extract

the squared envelopes of the filter outputs. These detector outputs are

then sampled at times ftnm M , which should correspond to the times of

peak signal at each filter output. The sampled outputs are then added, to

yield channel output vn

The block diagram in figure 1 is not restricted to a transmitted

sequence of M tone bursts at a common center frequency. In fact, due to the

general filter impulse responses and sampling times allowed, it encompasses

any sequence of orthogonal deterministic signals transmitted at arbitrary

time delays and frequency offsets, provided they are known to the receiver.

ihe processor in figure 1 also allows for unknown time delay to the target

range and unknown frequency shift due to target movement, by virtue of the

sampling times not being optimum, and the filter impulse responses not being

matched to each received signal component. An example is afforded by the

case where the filters are time-delayed and/or frequency-shifted versions of

one another,

hm(r) = h(t-CU) exp(i2rf nT), (1)

nm nm nm

corresponding to a time sequence of frequency-stepped pulses; here h is the

complex envelope corresponding to impulse response h [1; pages 65-72].

2
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hn VEnvelope- / _ _
h~ l (- - )  Square

M
• . ' 2Vn

rn I
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Filters Detectors Samplers Summer

Figure 1. Pre-Processing for n-th Channel

w ThresholdDeclare:- I ~Comparison De ar

0 0R

VN channel number n Indicate

Figure 2. Indicator Or-ing of N Channels
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Another instance which is covered by the processing indicated in figure

1 is where the transmitted signal encounters multipath and/or separated

target highlight structure. For example, a single transmitted tone burst

might be received as four pulses, due to two multipaths and two target

highlights. Thus, the number M of filters employed in figure 1 is be

interpreted as the total number of received signal components. Some results

for the receiver operating characteristics of this processor are given in

[1] and [2].

When the processing in the n-th channel indicated in figure 1 is

completed, the total of N channels that must be considered is subjected to

the indicator or-ing depicted in figure 2. Namely, the maximum of the N

channel outputs is extracted, along with its identity,

w = max (vl , v2 1 ... I vN) = v- , (2)

and compared with a fixed threshold:

w < threshold: declare no signal present

w > threshold: declare signal present in channel n (3)

Thus, there are two possible outputs from figure 2, the first being a

declaration of no signal present, and the second being a declaration of a

signal present along with an indication of which channel contains the

signal. (This latter information is useful for identifying the Doppler

shift, for example, of a moving target.)

4
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A false alarm occurs when output w in (2) exceeds the threshold, but

there is no signal present at the input. On the other hand, a correct

detection occurs only when the signal channel output exceeds the threshold

and all the noise channel outputs. That is, we insist on accurately

identifying the signal channel, in order to achieve a correct detection.

lhe performance characteristics of the processor combination in figures 1

and 2 are of interest, namely the false alarm probability and the

probability of correct detection, in terms of M, the number of filter

outputs summed, N, the number of channels or-ed, and some signal-to-noise

ratio measure at the receiver.

It should be observed that the M received signal components have been

presumed to have undergone no fading. The only randomness in the received

signals are the independent random phase shifts between components. Some

results on fading signals, including partial fading between pulses, are

given in [3]; however, or-ing was not considered there.

It is also assumed that the individual signal components are orthogonal

with respect to each other, perhaps due to time separation and/or frequency

shift. That is, at sampling instant t, there is only one signal

component contributing, with all the other signal components yielding no

output at that filter at that time.

lhe processor considered in this study has undergone some analysis in

the past [4]; however, several significant extensions have been made here.

First, a different definition of detection probability has been adopted

here, namely one which counts as correct detections only those events for

5
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which the signal channel output exceeds both the threshold and all the other

undesired noise channel outputs. Second, results are extended from a

sinusoidal signal to arbitrary orthogonal deterministic signals and filters,

with arbitrary sampling instants; this allows for analysis of the effects of

filter-signal mismatch, Doppler offset, time desynchronization, multiple

highlights, etc. Third, a fundamentally different signal-to-noise ratio

parameter, d, is used here to characterize performance, namely, a measure of

the total received signal energy to noise spectral density ratio, rather

than the signal-to-noise ratio per pulse (usually assumed identical for all

pulses); this allows for arbitrary fractionalization of the total received

signal energy into component pulses. Fourth, the detection probability vs.

false alarm probability curves are plotted on normal probability paper with

total signal-to-noise ratio, d, as a parameter; this straightens out the

curves, makes them nearly equi-spaced in d, and affords easy accurate

interpolation in signal-to-noise ratio values. Finally, the current results

are extended to much larger values of the number, N, of or-ing channels and

much smaller false alarm probabilities PF; in particular, values of N up

to 1000, and values of PF as small as 1E-lO, are considered.
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SIATISTICS OF FILLER ENVELOPE-SQUARED OUTPUT

In this section, we derive the statistical properties of the output of

figure 1. Suppose a real narrowband deterministic signal s(t) and a real

random noise process n(t) have complex envelopes s(t) and n(t),

respectively. Let the sum of these two processes excite a narrowband filter

h(tc) with complex envelope impulse response h(t). The complex envelope of

the filter output at time t is proportional to

c(t) -- [_(t) + n(t)]40h(t) =a(t) + ib(t) + x(t) + iy(t), (4)

where

a(t) + ib(t) = dt s(t) h(t-r) (5)

is the deterministic signal output, and

x(t) + iy(t) =-- d n(-c) h(t-T ) (6)

is the random noise output process. Then the filter sluiared-envelope output

at time t is

Ic(t)I2 =  ja(t) + ib(t) + x(t) + iy(t)12

= [a(t) + x(t)) 2 + [b(t) + y(t))2 (')
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More generally, for M filters, if signal s m(t) excites filter h (t),

the m-th filter squared-envelope output at sample time t ism

2 2 2
Cm (tm) =[am(tm) + Xm(t m) + [b m(t M) +- Ym (t m)] for 1 < m < M. (8)

Sample times {tmi 1 can be selected arbitrarily; each individual tm should be
2 2

chosen to maximize the size of the m-th signal output, am(tm) + b (tm).

If we sum these squired-envelope filter output samples, we have channel

output

v M c lc(t )1 2

~tm (t m + x m(t )] 2 + [b m(tM) +- Ym (tm)] 21 (9)
m=m

The signal and noise outputs, given in (5) and (6), apply for an arbitrary

complex envelope signal s m(t) and filterh m (T) in the m-th branch of

the receiver. The instantaneous output signal squared-envelope is

a2(t) + b2 (t)- Iam(t) + ibm(t)1 2  jf dr(T)-hl (t-1)) 2 
, (10)

while the instantaneous output noise squared-envelope is

x2 ()+ y 2 ()=Xt)+ i' t) 2 = jfdr f!(T) h (t-T)I' (11)

8
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Here, we presume that a common broadband noise n(t) excites all the filters

htj hCJI in the receiver bank. Observe that if the m-th signal is subject

to a random phase shift, according to the factor exp(io ), this cancelsm

out of the envelope-squared signal term. Thus, all the results here apply

not only to a deterministic signal, but also to one with an arbitrary phase

shift. However, no fading of the received signal is allowed in any of the

current results.

If the real input noise n(t) is white with double-sided spectral level

Nd watts/Hz, then the correlation of complex envelope n(t) is [1; ch. II,

(3.11) and (6.22)]

1!(t) ! (t-r) = 4 Nd 6(T) = 2N0  (T); (12)

N is the single sided noise spectral density level in watts/Hz. By use0

of (6), this results in average noise powers for the m-th components, as

x (t) d Ym(t) = 2Nd d1 (13)

We presume that all the filters have the same level (energy); thus, we define

2 x2 ty) t dth~
2 M y(t) = 2N f dTChl(T)1 2  for 1 < m < M. (14)

9
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This is an important restriction; greater generality is given in

[2; appendices B and C].

We are now in position to employ the general results listed in appendix

A, when the noise is Gaussian. Namely, define, as in (A-l),

d2 1 m [a2(t) 2m(tm')

- I dT (T) h(t T) 1 2

M =

~I fd. Mt-) h(tm _-[)

Observe that the absolute level of each filter, h m, cancels out in this

2
ratio. However, d does depend on the scale of each signal sm and

inversely on noise level Nd.

The maximum value of each term in these ratios is realized by choosing

the m-th filter such that its impulse response

h( k Smlm -U ), (16)

10
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where k is a complex constant selected to guarantee the equal energy

requirement in (14), and Im is a delay inserted for realizability, and by

choosing sample time tm equal to 1m* This is the matched filter to the

m-th signal, sampled at the time of peak output. Thus, we have, in the best

situation,

ma 2 1 m 1 m T 2E Tmax d 2 N-d = N Em = N - No (17)

d rld o~

where E is the received signal energy in the m-th real signal component

s m(t), and F is the total received signal energy over all M paths

(branches). Additional interpretations of d2 are available in (A-21) et

seq.

lhis maximum value of d2 in (17) is realized only if the receiving

filters are the matched filters (16), and if the filter outputs are sampled

at the correct time instants. More generally, the generic value of d2 in

(15) allows for arbitrary signals, filters, and sampling instants, thereby

affording the possibility of considering losses due to mismatch and

desynchronizatlon. The signals can be time-delayed and/or frequency-shifted

versions of each other, if desired. A more thorough analysis and comparison

is presented in [2; appendices B and C]. The received signals have

undergone no fading in any of these considerations; thus the current

analysis applies to a deterministic signal, except for random phase.

11
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Reference to (A-2) and (A-6) now allows us to state the exceedance

distribution function of channel output v in (9) as

Prob(v > u) = 1 - PV(U) = QM (d,Pu /o) for u > 0, (18)

where the QM-function is

QM(O, 1) = dx x (X) IM laX) exp (2L_ (19)

Parameters d and r in (18) are given by (15) and (14), respectively. ihese

results pertain to the signal-bearing channel; the noise-only channel

outputs correspond to setting d = 0.

12
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FALSE ALARM AND DElECTION PROBABILITIES

lhe exceedance distribution function of the processor output vn

for the n-th channel (see figure 1) is given by (18) for signal present in

that channel. For those channels with no signal present, the exceedance

distribution is

1 -P (0) (U) = QM(0,T) - E_ (T 2 / 2 )  for u > 0, (20)

v 0M 0" EMlT/2

where we have let

I R /a (21)

for notational convenience, and defined

En(x) = exp(-x) en(x), (22)

where
n k

en (x) = j xk/! (23)
k=O

is the partial exponential [5; 6.5.11].

FALSE ALARM PROBABILITY

Since the noises in the N channels subject to or-ing in figure 2 are

presumed independent, the probability that all N outputs do not exceed a

threshold value u is

13
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P(o) N = -NEM1 ) [ (24)

where cumulative distribution function p(o) was obtained from (20).
v

The false alarm probability is then

PF = 1 - [1 - E M(T2 /2)]N , (25)

where we used (21).

DETECTION PROBABILIlY

When signal is present in one channel, we have several alternative

definitions of a detection probability. For example, we could define the

probability of signal detection, PSD' as the probability that the sjnal

channel output exceeds threshold u, disregarding the noise channels

completely; then directly from (18) and (21),

PSD = QM(dT), (26)

which is, of course, independent of N.

However, it is possible that the noise channels could also cause a

threshold crossing, even when the signal channel does not. We can then

define a probability of any detection, PAD' as the probability that _

channel output exceeds the threshold u. This quantity is given by

14
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PAD 1 - [P(O)(u)N-1 P (u)

- 1 - [I- EMI( 2/2)] N -1 [1 - QM(dT)], (27)

by use of (20) and (18). This is the case considered in [4; see (9) and

(4)].

lhe problem with this latter definition is that, since we are interested

in knowing which channel contains the signal, the probability PAD contains

some (rare) events which indicate the incorrect channel to contain the

signal. lhe best alternative appears to be to define the probability of

correct detection, PC' as the probability that the signal channel output

exceeds the threshold u and exceeds all the noise outputs. In this case,

the signal will be detected and its channel number correctly indicated.

lhis probability is given by

O

PC= dt pv(t) [P(o)(t)]N-I, (28)
U

where probability density function pv and cumulative distribution function P(O)

are given by (A-4) and (A-9), respectively. Substituting these expressions,

letting x IT/a, and using (21), there follows the integral result

15
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(M-1 Ml(dX) x /2)] N -

P CD idxx x (d M-l dx exp _ 2 [l-E M-1(x 2 )N- (29)PD T

From physical reasoning or mathematical manipulations, it follows that

PCD < Pso < PAD for N > 1. (30)

For N = 1, no or-ing, all three detection probabilities are equal to

Q M(d,T).

Also, from (29), since the bracketed term is greater than or equal to

its value at x = T, we have the lower bound

PCD > [I - EMl(T 2/2)] N - 1 QM(dT) for N > 1. (31)

Thus we have the tight bounds on the probability of correct detection:

[1 - EMl(1 2/2)] N -1 QM(d,T) < PCO < QM(d 'l ) (32)

1o show how tight these bounds are, recall the false alarm probability

in (25), in order to express the bounds as

16
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N-1

(I - PF) N QM(d,T) < PCD < QM(d T ) (33)

For small false alarm probabilities,

N-i
(1 - I 1 - PF N-1 F ' (34)

leading to

(I - PF) QM(d,1) < PCD < QM(d,T); (35)

thus the bounds in (32) are very tight for small false alarm probabilities.

This is very convenient computationally, since it means that we will not

have to evaluate the integral in (29) numerically, but need only compute the

simpler quantities QM and EM- l .

One special case of PCD can be evaluated in closed form: for d = 0+,

(28) yields

Ce

PCD() dt P()(t) [P(,)(t)]N-

S 11 - [P(o)(u)]N] = PF (36)

the latter relation following from (25). This relation agrees with physical

reasoning.

17
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TIGHTNESS OF BOUND

To verify the accuracy afforded by using the upper bound Q M(d,1),

instead of the exact result (29) for P a short comparative study of the

two quantities was conducted; the numerical results are tabulated in

appendix B. False alarm probabilities near the values .1, .01, .001, and

detection probabilities near the values .5, .9, .99, .999 were considered,

while M took on values 1,10, and N took on values 2,10,100,1000. These

ranges of values encompass most of the cases of practical interest; there is

no need to consider smaller PF values, since the discrepancy is even

smaller then. It will be observed that for PF < .1 (the only cases

plotted here), the differences between the exact PCD and QM(d,T) are

inconsequential; in particular, see figure B-l.

18
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GRAPHICAL RESULTS

In this section, we plot the analytical results for the false alarm

probability (25) and the tight upper bound on the probability of correct

detection (33); see (35). The number of filter outputs summed, M, ranges

over the values

M = 1,2,3,4,5,6,7,8,9,10 = 1(1)10, (37)

while the number of channel or-ed, N, ranges over the values

N = 1, 10, 100, 1000. (38)

The parameter, d, on the plots is the generic signal-to-noise ratio defined

by (15), for general signals and filters. The 40 combinations corresponding

to (37) and (38) are plotted on normal probability paper in figures* 3

through 42. Values of d small enough to encompass the (poor quality)

operating point (PFPCD) = (.01,.5) have been employed; while at the

high quality end, values of d extending up to (PFPcD = (IE-l0,.999)

have been used. lhe increment in d is .5 for all the results in figures 3

through 42.

*All the figures are collected together, after the Summary section.
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It will be observed that the curves are approximately equispaced in

parameter d, thereby allowing for ready accurate interpolation in d, given

specified PF and P CD The curves, for cases in which N 1 1, are

virtually straight lines, while those for N = 1000 have developed

significant curvature; nevertheless, the equispaced nature of the results

readily accommodates interpolation in all cases.

From these results, it is possible to extract a different type of

performance characteristic, namely the required values of d to achieve a

specified quality of performance in terms of false alarm probability and

detection probability. In figures 43 through 48, these results are plotted

for the six combinations of

M = 1,2,4 with PCD = .5,.9, (39)

while N varies over 1(1)1000, and PF takes on the values E-2, lE-4, IE-6,

1E-8, IE-lO. (Strictly, only the cases for N = 1, 10, 100, 1000 follow from

figures 3 through 42; the remaining values of N were obtained directly from

(25) and (33).)

The most striking feature of figures 43 through 48 is their slow

increase with N, the number of channels subjected to or-ing. Certainly the

increase in required d values was anticipated, since or-ing cannot improve

performance capability; however, the amount of increase is not very

significant. Thus, from figure 43, for PF = 1E-1O, d need only increase

from 6.71 to 7.61 as N increases from 1 (no or-ing) to N 1000. Greater

increases are necessary for the larger PF values.

20
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SUMMARY

It will be easily observed from the graphical results in figures 3

through 42 that, for a fixed amount of or-ing (fixed N), the performance

degrades as M increases. That is, for specified values of PF and d, the

values of PCD decrease as M is increased. Alternatively, to maintain a

specified performance pair PF P CD the values of d must be increased as

M increases. This is due to the fact that parameter d in (15) or (17) is a

total (or output) signal-to-noise ratio measure and that larger M

corresponds to increased fractionalization of the received signal energy

into more paths or branches. Since the filter-output combination rule is

incoherent, namely adding squared envelopes, this fra tionalization cannot

be made up by summation, and a loss occurs.

On the other hand, if we were to add more paths to a particular system,

then both M and d would increase. Whether this results in an improvement or

degradation depends on the relative amount of additional energy. Particular

cases can be studied quantitatively by referring to figures 3 through 42.

In addition, programs for the procedures in this report are listed in BASIC

in appendix C, if additional cases of interest to the reader need to be

investigated.

The maximum value of d2 is given by (17) as 2ET/No; this can be

realized only if the matched filters (16) are utilized and if the sampling

times are properly selected. If these conditions are not met, the value of

d2 given by (15) must be employed. In any event, the figures are
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parameterized by quantity d, regardless of what filters and sampling times

are used. Thus a desired value of d for a mismatched situation-will require

larger signal levels for Is mI in (15) than the values indicated by the

ideal, (17). In this manner, the degradation caused by mismatch and/or

desynchronization can be quantitatively assessed.

The received signal was assumed to have undergone no fading in the

current analysis. Extensions to fading signals, but without or-ing, are

available in [3]. This latter reference presumed a fixed threshold for

decision variable comparisons (as did this analysis in (3) and (18));

extensions to a variable threshold, based on a finite sample size

noise-level estimation procedure, are currently underway. Results on this

normalizer in a fading environment will be ,eported on shortly by the author.
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APPENDIX A. Q M-FUNCTION RELATIONSHIPS

riM miM

let tx 1 and tymIlbe independent identically distributed Gaussian

2
random variables, each with zero mean and common variance a , and let

l and fbm be arbitrary fixed constants. Define "total"

parameter

2 = 1 (a2 b2 (A-)

a m=l

Chi -Squared Variate

We are interested in the statistical description of the noncentral

chi-squared random variable of 2M degrees of freedom,

M 2 2
v- [(xm + am) + (ym + bM) ] (A-2)

We will only list results here, and will not give detailed derivations.

lhe characteristic function of v is (6; page 11]

f = exp(iTv) -- (1 - iT2 2) -  expl-i2 ' (A-3)

A-1
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which is seen to depend on the arbitrary constants lan and jh} only
2

through the sum d in (A-]). Ihe probability density function of random

variable v is [7; 6.631 4]

P2(u) r 2 d M--exp-1-2- } for u > 0. (A 4)

The cumulative distribution function of random variable v is

LL

Prob (v < u) P V(U) j dt p(t) , (A -5)

and the exceedance distribution function is

1 Pv(u) QM(d,Tu" /d) for u > 0, (A 6)

where the QM-function is

O dx x(?.) IMl(-X) exp - . (A-I)

As special cases of (A-4) and (A-6), for d =0 , we have probability

density function

()M-1 ~2

P°) (u) ( - exp -u for u > 0 (A--)

and exceedance distribution function

1-Pv(u) exp -2j M- 2] = EM- 2 ) for u > 0, (A-9)

where [5; 6.5.11]

n 
k

en(X) A x /k! (A-0)
k4-

A-2
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is the partial exponential and where we define

ln(x) r exp(-x) en(x) . (A-1l)

Returning to the general case of d > 0 for random variable v again, the

cumulants of v are

X(n) ' n! q for n > I , (A-12)

the i-th moments are

) 2v _rlE5u

v ( 2o2 r (M) I F (--v;M;- d 2/2) for u > -M, (A-13)

and the n-th moments are

vn = ( 2 2)n n 1(M-1) 
( -d 2 / 2 ). (A-14)

Chi Variate

lhe noncentrdl chi variate of 2M degrees of freedom is

Z = V >-] [(Xm + a M) + (ym -bM) (A-15)

Its probability density function is

p (u) V( -'oMl 'Ml(- exp 2 d2' for u > 0, (A-16)
z )  -2 d2ai3IM- 2

A-3
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and its exceedance distribution function is

- Pz(u) - QM(d, u/d) for u > 0. (A 11)

As special cases of (A-16) and (A-L/), for d 0 0, we have probability

density function

() 2 2M-1 
2

p (u) exp for u > 0 (A-18)

and exceedance distribution function

I - P(o)(U) = EM_1 for u > 0, (A-19)

in terms of the functions defined in (A-10) and (A-11).

In general, for d > 0, the v-th moment of random variable z is

~~~ =02 r~V/?J 2
( 2M)2 1 F (-v/2;M;-d /2) for u > - 2M. (A 20)

The characteristic function and cumulants of z are not available in any

compact form.

Special Case

If the constants in random variable v in (A-2), and in random variable z

in (A-15), satisfy

A-4
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am = A cos Om, bm - A sin em, (A-21)

where foml are arbitrary, then (A-1) reduces to

d? M A?/2 , (A-?2)

independent of the particular values of {om . So if {Ein were random

variables instead of constants, the statistics of v and z in (A-2) and

(A-15), respectively, would be unaffected. ihis conclusion follows

immediately from (A-3).

In this latter case of random JOmj, if they are also uniformly

distributed over 21, it is sometimes useful to define an individual (common)

signal-to-noise ratio

a2 b2  2m m A2
R ... .- .. .. 2 for all m. (A-23)

x2  2 2m Ym

lhen the parameter d2 in (A-22) can be expressed as

d2 = 2 M R. (A-24)

More generdlly, if

am  Am cos Om , bm Am sin em, (A-25)

where JAmj are arbitrary constants, then (A-l) reduces to

M
d 2 L.m> A 2 (A-26)

2 ml
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Again, presuming 16mI to be uniformly distributed random variables over

?i, if we define the individual component signal-to-noise ratios as

a 2 b A /2
R __m n - (A 21

m 2Rm .... 2 (A- )
2 2

Xm 
Ym

then (A--26) can be expressed as

2 M
d = 2 >_ Rm  (A-?8)

m=l

lhehp relations, (A-24) and (A-28), afford an alternative interpretation of

the "total" parameter d2 in terms of (omponent signal-to-noise ratios.

A-6
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APPFNDIX B. IABUIAIION OF PCD AND QM(d,l)

For the eight possible combinations of M:1,10 with N:2,10,100,1000,

values of the exact value of PCD and the approximation afforded by

QM (d,l) are tabulated here. An explanation of table B-i, which pertains

to M-1, Na2, follows:

For threshold 1 7 2.40, the false alarm probability P .10912.

Holding these values fixed, then as d is varied from 2.2 to 5.4, the

detection probabilities vary over the values .5, .9, .99, .999

(approximately). This case is covered by the top four lines in table B-i.

When the threshold 1 is changed to 3.25, the new false alarm probability

is PF - .01015, and the second group of four lines in table B-i pertains.

[his procedure is continued for all the M,N combirations, while PF ranges

over the values .1, .01, .001 (approximately). The comparisons for smaller

PI values are not conducted because the discrepancies are very small, as

may be seen by inspection of the tables.

The greatest discrepancies between probabilities PCD and QM(d,T)

occur in tables B-3 and B 4, where Nr-l0. These particular cases are plotLed

in figure B-I, for false alarm probabilities in the .1 and .01 regime. For

example. the two curves labelled by A, which pertains to M=I, N=10,

P ' 1, show a very slight difference between the two probabilities over

the range (.5,.999). Ihe label B actually pertains to two overlapping

curves for M-1, N:-10, P, .01; that is, the plotted values for P and

B -1
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QM (dT) are indistinguishable at this level of false alarm probability.

ihe situation for C and D is exactly similar, except that in these latter

cases, we have M=10, N=10O.

.998

.98 7

.95
0
U

0 .9

0 .7

L-

a- .6

d, Signal-to-Noise Ratio Parameter

A: Table B-3, P .10272

B: Table B-3, F =.01021
C: Table B-4, PF =.l115

D: Table B-4, F =.01002

Figure B-1. Comparison of Probabilities
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d PCD QM(d, l )

T 2.40 2.2 .50220 .51005
PF .10912 3.6 .91017 .91506

4.6 .98935 .99062
5.4 .99890 .99915

1 = 3.25 3.1 .50353 .50409
PF = .01015 4.4 .8999I .90032

5.5 .99099 .99106
6.3 .99920 .99921

1 = 3.89 3.8 .51653 .51658
PF = .00104 5.0 .88951 .88954

6.2 .99205 .99206
6.9 .99905 .99905

lable B-1. Probability Comparison for M-l, N-2

d PCD QM(d,1)

T 5.59 3.5 .49914 .50646
PF .10129 5.1 .89637 .90120

6.4 .99083 .99185

7.3 .99913 .99931

1 6.32 4.6 .51111 .51166

PF= .01013 6.1 .90493 .90526
7.3 .99132 .99138
8.1 .99905 .99906

T = 6.89 5.3 .49032 .49036

PF =  .00101 6.8 .90322 .90325
8.0 .99162 .99162
8.8 .99913 .99913

lable B-2. Probability Comparison for MlO, N-2

B-3
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d PC QM(d,l)

1 3.01 2.9 .51382 .52498

PF .10212 4.2 .90180 .90851
5.3 .99074 .99213
6.1 .99909 .99933

1 = 3.71 3.6 .51050 .5)140

PF = .01021 4.9 .90404 .9045/
6.0 .99161 .991/1
6.8 .99927 .99929

T = 4.29 4.2 .51145 .51153

PF = .00101 5.5 .90544 .90548
6.6 .99188 .99189
7.3 .99903 .99903

lable B-3. Probability Comparison for M71, NlO

d PCD QM(d, l )

1 6.11 4.3 .49943 .51032

PF .10175 5.9 .90911 .91532
7.1 .99133 .9925/
7.9 .99898 .99921

T 6.73 5.2 .52682 .5?169

PF= .01002 6.6 .90232 .90282
7.8 .99133 .99143

8.6 .99908 .99910

1 = 7.23 5.8 .51336 .51344

PF .00104 7.2 .90126 .90131
8.4 .99160 .99160
9.2 .99914 .99914

Table B-4. Probability Comparison for MO, N--10
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d PCD QM(d,1)

1 = 3.70 3.6 .50535 .51547
PF .10105 4.9 .90037 .90628

6.0 .99080 .99193
6.8 .99914 .99931

1 4.29 4.2 .51067 .51153
PF= .01003 5.5 .90499 .90548

6.6 .99180 .99189
7.3 .99901 .99903

1 4.79 4.7 .50637 .50645
PF .00104 6.0 .90378 .90382

7.1 .99110 .99170
7.8 .99900 .99900

lable B-5. Probability Comparison for M:1, N=100

dPCD QM(d, l )

r z 6.12 5.2 .52240 .53217
PF = .099/4 6.6 .89913 .90411

7.8 .99064 .99169

8.6 .99895 .99913

1 = 7.23 5.8 .51258 .51344

PF = .01033 7.2 .90082 .90131
8.4 .99152 .99160
9.2 .99913 .99914

1 1.68 6.4 .52928 .5293b

PF .00102 7.8 .91140 .91144
8.9 .99112 .99113
9.1 .99910 .99910

lable B-6. Probability Comparison for M-10, N100
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d PCD QM(d 'l)

T = 4.27 4.2 .51031 .51962

PF = .10403 5.5 .90369 .90884

6.6 .99141 .99233

7.3 .99892 .99909

I = 4.79 4.7 .50564 .50645

PF .01036 6.0 .90337 .90382

7.1 .99162 .991/0

7.8 .99899 .99900

T 5.25 5.2 .51839 .51846

PF= .00103 6.5 .90916 .90920

7.5 .99008 .99009
8.3 .99911 .99911

Table B-7. Probability Comparison for M-I, Nrl000

d PCD QM(d,l)

T = 1.22 5.8 .50897 .51785

PF = .10332 7.2 .89822 .90320

8.4 .99098 .99185

9.2 .99903 .99917

T = 7.68 6.3 .49278 .49354

PF =  .01017 7.8 .91105 .91144

8.9 .99105 .99113

9.7 .99909 .99910

T = 8.08 6.8 .50022 .50029

PF = .00105 8.2 .90129 .90133

9.3 .98975 .9897b

10.1 .99894 .99894

Table B-8. Probability Comparison for M710, N-l000
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APPENDIX C. PROGRAM LISTING

10 N=10 I HUMBER OF FILTER U-IITFUT-. 'SLIMED
20 l= 100 ' NUMBER OF ':HF IINEL_. 'JR-ED

-I 11.1 U " 1 10: Dc,.. 1: 10, : : .' I T H R ES::i H O L D ALU 1 1 ES'

40 N PFU 101 H.' , Fd 1' 1 0:, ', FA 2, 10 C,1, FA' 1 C0 .,P d4, 1 0 , Pd 5 ' I CA CO
50 -COP1 Fd6". IC01,,Pd7 kF10 d-", 10:', 9, 10 ,PFdlO, 100:
60 C) C1ON Fd, 1 1 Rd 2100',Pd1 3'10,,Pd14 100,Pd,15 100,
70 CON Pd I, 1 0.'ARd 17 100

DO DU UBLE 1,14, I, J IN TEGER
90 D ATA 2, ,4,4,'3, 4,5,:,4,4,5, ,4,4 ,5, ,4,5,5

100 DATA 3,4, 5,, 44,5,5,5,4, 4 5, 6, 4,5,5, 6,4,5,,
110 READR DcA, * STARTIHG VLUIES FOR d
12 0 U= .
I .0 U=U+.01
140 Pf =FtFi'f U, H, N
150 IF Pt 1 THEN 1 30 UPPER LIMIT ON Pf
160 U1=MA U u .:u-.l,.01,
170 j=U+. 1

1.:0 F =FNPt 'I, H, H '
190 IF F't IE-10 THEH 170 ' LOWER LIMIT ON FfR
200 LI7=L
210 Deu= IJ 2-IJI - 100.

FOR I=0 TO 100
-.:0 UUI +Del u*
4U UK I )U
t5t P ,K I =F H f', U 1H, 11
E.0 NE,::T I

-"70 I =L GT W N.

0 Do= 11 M , I :
2'90 PPINTER I:. 'RT

001 PRINT -, 11, D,
111 PRINTER IS CRT

C10 FOR J=1 TO 17
D: rt==Io+'.T-1-.5 TOTAL DEFLECTIIN PARAMETER d

40 C FOR I=0 TO 100
-5;0 T_11I I THRESHOLD
.0 Pd NFNF', Ds Z U, M

F70 Fd=i I N , pd, .1'. .
30 IF J=1 THEH PdlII )=Pd

390 IF 3=2 THEN4 P'd2, I)=Pd
400 IF J= 3 THEN F'd I '=PJ
410 IF =4 THEN Pd4'1 ,=Fd
420 IF J=5 THEN Pd5 I =Pd
430 IF J=6 THEH Pd6t I =Pd
440 IF =7 THEH Pd7' I =:'=
450 IF J: - THEN F'd I '=Pd
460 IF 3=9 THEH Pd' I .)=Pd
470 IF 1=1U THEH F',dlO, I)=Fd,
4;:0 IF J=11 THEN FRl1 1, I =Fd
490 IF 1=12 THEN Fd12k I =F'd
500 IF J1j3 THEN Fd13- I):Fd
510 IF J=14 THEH F'dl4 I '=Pd
520 IF 3=15 THEN Pd15- I =Fd
530 IF 1=16 THEH Pdl6(W)=Pd
540 IF JT=17 THEN PdJl7(tI=F d
550 NEXT I
560 NEXT J

C-I
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570 FOR 1=0 TO 100
580 PF , I =FN I r'.ph ( Pi I )
590 Pdl k I)=FtIrM,.ph I ', PdI ( '

600 FRd2' I '=FNhln...,p-, (Fd2 I,
£10 Pd3 I =FtIr,,-F pN h IFd3 I ':
£20 Fd4k I j'=FN ,ip-, ,:Fd4: I
63 Pd5 I =FNihinph ,:F'd5( I
£40 F ' I =FNIMTV..,ph" ,:F'd' I
650 Fd, I =FN I ri.ph 'Pd7 I
660 Fd-': ' =FtN I =F phN ': F'dE: KI '

,.7 0 F'd9K I =Ft"l r, 1 :F'K I '
, 0 Fd I I = F t I r',..' ' F,- ' :I '

riu F,ill l *=FtJIr'vrF-,1 (Fi' I,:

70 F0',JI I '=FIrk.)phi 'F'd12'1
0 Pd I: I '=FI'vp h kF',1 : Pd I

72d0 Pd4 I ,FlHlnvphi (Pd14, i
: F'dl5' I ,=FHIr,.,p-,i 'F dl. , 15 I
40 Fdl6t I '=F HlrI...'h-i F'd16 1)

750 PdIT, I '=FNIr ph-, Fdl7 1
E. ci NE:T I
70 CARLLA

L E N D
790

SJ0 TIEF Ft I I .'f:,h I.,. Fi"1 55, 2£ -- :

S_10 IF K,=.5 THEN RETURN 0.
820 P= r'l I tI ": :::, i -:.
830 T=-LOG, F
840 T=SuR,,T+T

L50 F- I . +T * t 1. 4 -:27:-::3+ T * I .. ::'92 69 + T *. 01 -: -::u'
80 FP= TT- .2. 5 15517 + T* (. 02-:5 - .. 0.10 2 ' P
,70 IF .5 THENH P=-P
8_0 RETURN P
890 FMEND
900 I

9 10 DEF FNP',U,DOUBLE M, N' FAL'SE ALARM PROB IL I T','
920l T=FNE k . 5*U*U, M- 1
930 f:1 . -t. I . -T:"

940 RE T IJRt.I PF
950 FNEND
960 1
970 DEF FPd (Di, IJ, DOUBLE N , DETECTION PROBAB IL I TY
9:0 P,- =F I' I -, D I. U IUPPER BOUIN N F',: ,
990 RETURN Pd
1000 FNEND
1010
1020 DEF FNE,:',DIIBLE NH) e.xp'-" ' E r ':
1030 DOUBLE P INTEGER
1040 T=S=EXPk '.

1050 FOR h = TO N
1060 T - :

1070 S=S+T
1080 NEXT F
1090 RETURN S
1100 FHED
1110 I

C-2



TR 8121

1120 DEF FtH0r,,I DOUBLE M, PEAL A, B ON':.A,B)
1130 Err or"= . E-17
1 140 DOUBLE MI,3 I INTEGERS
1150 03=.5*AtA
1160 04=.5*B*B
1 170 O5=EXP ( -. 5 . 03+IJ4
1180 06=07=05
1190 MI=M-I
1-00 FOR 3=1 TO I
1210 07=07*04"J
122u u6=126+0?

1230 NEXT J
1240 Cr,=)5*06
1250 FOR 3=1 TO 300
1260 05=Q5*0:3 .".J
1270 07=Q7*4- ,:J+M1)
1280 06=06+07
1290 09=05*06
1 300 Omr=Ori+0 9

1 310 IF 09.=Error*Or THEN 1340
1 :320 NE:.:T J
13-:30 PRINT "300 TERMi=S INl FNOr(M,A,B) AT ";N;A;B

1340 RETIJRN MIN Om, 1.
1350 FNEND
1360

1.1:70 SUB A PLOT PD VS PF ON NORMAL PROBABILITY PAPER
1 -0 COM Pf(*),Pdl&* ',F'd2>'*), Pd3(*),Pd4(*),Pd5(i*.)
1390 CON' Pd6'W , Pd7(.), Pd8(*), Pd9.*.',Pd10.;*

1400 CON Pd 1. :Pd12*,Pdl3'*), Pdl4(*), F'dl 5.*
1410 COM Pdl6(*),Pdl.i.*)
14. 0 DIM A$(30J,BS[ 32J
143:0 DIll Xlabels.:-0,"vlabel$ 1:30)
1440 DIM Xoord(1:30),Ycoord(:30)
1450 DIM Xgr. i d I : :30), ,gr d I : 30)

14t0 DOUBLE N, L., Ly,N.:N:-, Ny, I INTEGERS
1470 1
148-'0 AZ= "Prcotabi lit y of False Alfar-r"

1490 B$="Pr obabi I i t of Cor-r.ect Det Ec t i,:r
1500 1
1510 Lx=12

1520 REDIM Xl IabE 1$ 1 : L .. ), c ord,'. 1 : L.)
1530 D ATA E- 10, E-9 E- , E-7, E-6, E-5, E-4, E-3, .O ,.02,. 05, .1
1540 READ ',2I1a:be i$ ( *)
1550 DATA 1E-10,1IE-9,1IE-S,1E-7,1IE-6,1E-5,1IE-4,1E-:3,.01,.02,.05,.1I
1560 READ XI o,. *)

1570

1580 L 18
1590 R EDIM Y be I ,11: L ',Ycoor d ( 1 : L-.
160DATA .01,. 02, .05, . 1, .2,. 3, .4, .5, .6, .7,. 8,.9

1610 DATA .95, .98, .99, .995, .998, .999
1620 READ Ylabe$K(* )
1630 DATA .01, .02, .05, .1I, .2, .3, .4, .5, .6, .7, .8, .9

1640 DATA .95,.98,.99,.995,.998,.999
1650 READ Ycoot d*)
1660

1670 Nx= 14
1680 REDIM Xgrid(:Nx)
1690 DATA 1E-I0,1E-9,1E-8,1E-7,1E-6,1E-5,IE-4,1E--.0024 .005,.01,.02,.05.1

1 700 READ Xgr 1 d *)

1710C
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1 720 N. 1=

173-0 R EDIM "gr 1 , I t I
1740C DATA .1, .02, 05 .1,.2, .3,.4 .5,.6,.7,.S,-9

1750 D A TA 95, ,9 9 95 •998, 999

1760 R EAD Ygr1 d(*
1770 I

170 FOR I=1 TO L
1790 ,c ocr j:. I =Ft I r'vph 1 < c car d. I
1 _0i NE T I
110 FOR 1=1 TO L',
1--il ':o.:-rd,. I .=FNIr'. i phi 'c' rd I.
1 3Ul NEXT I
14 0 FOR I=1 TO fl>-
1 .jr d: 5 ' =Ft , 1 .. h i ',:I gr d' I"'

1:-6C NE ';: T I

1 7 FOR I=1 TO N.,
1-8 8gr 1 -' I ',=FNIr p'h i .'r1 'd I

189Cl' HE:: T I
1900 :KI=:gr' i

19 U :2=2'gr 1 ,' N..: .
1920 Y 'grid,- 1.'
19.-0 72ijr i d ,:' Ii

1940 Sc a I c ,2<2-
1950 1INIT 200. "260. VERTICAL PAPER

1960 PLOTTER IS 505,"HPGL"

1970 PRINTER IS 505
1980 PRINT "'V 2"

1990 LIMIT PLOTTER 505,0.,200.,0..,260. I GDU = 2 rum

200 I ENPOR T 20. ,20.+i03. 'cale, 19., 122.
2010 VIEWPORT 20.,85. 19., 122.

-'-2 V.IEUPORT 22, 35. ,59. ,12. TOP OF PAPER

030 ''IEWPORT ,85., 19. 6- BOTTOM OF PAPER
040 W I NDOW -1.'' 1, Y 2
-050 FOR I=1 TO N>

UbU MOVE Xkgr1' I , 1

070 DRAW > gt d I ),Y2
2080 NEXT I
2090 FOR I=1 TO N,

2100 MOVE X1, Ygr 1 d,:I )

2110 DRAW X2, Ygri d( I
2120 NEXT I
21:30 PENUP

140 CSIZE 2.3,. 5
15 0 LORG 5

..160 = - Y 2-Y :' *. 02
1 170 FOR 1=1 TO L.:.':

2180 MOVE Xcoordi (, Y
190 LA BEL Xlabel (II
L200 NEXT I

.'210 OSIZE 3.,.5

2220 MOVE *5 'X2, * k -. 06 Y2-Y 1
223U LABEL A$
240 MOVE .5 :' 1 +',.2 1-. 1 * 2- ) 1

250 LABEL "Figure 42. ROC for M=10, N=000"
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CS$I E 2.$,5
U LORG S3

90 FOR 1=1 TO Lu.,
7 O0V E Y.: o: t'-j k I i

10 LABEL 'Ylab.E1(it'
U32 NEXT I
U23 LDIF PI/2.

.4U CI3E :3.,.5
2A5 LORG 5
2rU MOVE :- 5,:2X '*9y17
-7 LABEL B$
238 PENUP
-, ;'9cl PLOT Pt'> ',Pd 1-*)

2400 PENUP
24111 PLOT Pt'.*.',PJ2':.r
242U PENUP
24' 0i PLO T Pt'* ,FdP.J
2440 PENUP
2450 PLOT Pt'.* ),f4

2460 PENLIP
2470I PLOT Pt'. * * Pd5(*.
2480 PENIJP
2490 PLO T Pt (. ', Pd6'*

2500 PEMU P
LU 1 PLOT Ptk ,P-d7' *

2520 PEN UP
2530 PLOT P (*', PdSc*

24U PENUP
255 PLOT Pt'..*.,Pi9 *:)

256rU PENUP
-. 570 PLOT Pf(*',Pdl0:.*)

2580. PENUP
59 U PLOT P* u1*
r.UU PENUP
r 10 PLOT Pt' * ,Pd 12't*7
r U0 PENIJP
260 PLOT P~:,d3~

2640 PENIJP
2'6:5 0 PLOT Pft.*.,d4*
Lc6b0 PENUP
2670 PLOT P'w *.,Pdl5'.*)
2680 PENUP
29 0 PLOT Ptt*.'.Pdl6i.*.
2700 PENUP
2710 PLOTPfP1T.
2720 PENUP
2730 BEEP 500,2
2740 PRIN-TER IS C:RT
2750 PLOTTER 505 IS TERMINATED
2760 SIJBEND
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Accurate Efficient Evaluation
of Bessel Transform; Programs
and Error Analysis

A. H. NuttaU
ABSTRACT

The method of Filon numerical integration for
Fourier transforms is extended to Bessel transforms of
the form

00

G(w) =fdx Jo(Wx) g(x),
0

for general g(x). Specifically, for the two cases where
g(x) is approximated by (a) straight lines, or (b) parabolas,
over abutting panels, the corresponding integrals in the
Bessel transform G(w) are evaluated exactly (within
computer round- off error). Although these integrals
cannot be expressed in closed form (as for Filon's case), a
recursive procedure and an asymptotic expansion yield
rapid accurate evaluation of the required quantities.

Programs are furnished for both cases (a) and
(b) in BASIC. Furthermore, two versions of each are
furnished: a faster one requiring considerable storage,
and a slower one requiring very little storage. The
presence and location of aliasing is predicted and its
magnitude is investigated numerically. The error
dependence on the panel width used in both cases (a) and
(b) is established by means of numerical examples, one
with a very fast decay with w, the other with a very slow
decay with c. Comparisons with standard Trapezoidal and
Simpson's rules reveal that the new procedures are error
maintenance procedures, tending to keep the absolute
error for larger w comparable to that near w = 0, whereas
the standard rules are subject to aliasing errors that
become very significant for larger w.

Extensions to more general Bessel transforms are
possible and procedures for obtaining them are outlined.

Approved for public release; distribution is unlimited
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ACCURAlE EFFICIENI EVALUATION OF BESSEL

IRANSFORM; PROGRAMS AND ERROR ANALYSIS

INIRODUCIION

ihe method of Filon integration for Fourier transforms [1], [2; pages

408-409), [3; pages 67-75], [4; page 400], [5; page 890], [6; pages 62-66],

[7] +

f dx exp(iwx) g(x) (1)

is well established and very useful for accurate numerical work. Instead of

the standard Simpson's rule, which would approximate the complete integrand

exp(iwx) g(x) by parabolas over abutting pairs of panels, Filon's method

approximates only the function g(x) by parabolas, and carries out the

corresponding integrals in (1) anajyically. These closed form integrals

are then evaluated with computer aid. Since the exponential in (1) is being

handled exactly for all w, the hope is that the error of approximating (1)

by means of Filon's method will be substantially the same for larger U as

for small w (whpre all the error arises from approximating g(x)). That is,

Vilon's method is expected to be an error maintenance procedure, whereby the

absolute error does not increase significantly with w. Certainly that is

not the case for the Irapezoidal and Simpson rules, where significant

aliasing severely limits the accuracy o' the results for larger

1
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An alternative simpler procedure to Filon's method for Fourier

transforms is to approximate g(x) by straight lines over abutting panels,

and again to evaluate the resultant integrals in (1) analytically in closed

form. This (less-accurate) procedure is documented in [8; pages 418-419],

for example.

Here, we will extend these two procedures to a Bessel transform of the

form
TA

G(w) f dx Jo(wX) g(x) , (2)

0

where g(x) is an arbitdry given function, and J is the zeroth-order0

Bessel function. One of the major differences we encounter, relative to

Filon's method, ic that the resultant integrals cannot all be evaluated in

closed form. In order to circumvent this problem, we use a combination of a

downward recursion and an asymptotic expansion, which are limited in

accuracy only by the inherent round-off error of the computer utilized,

thereby obtaining an efficient useful procedure for numerical evaluation of

the pertinent integrals and functions.

lo give a physical application where the Bessel transform arises,

consider that we are interested in two-dimensional Fourier transform

40

ff dx dy exp(iux * ivy) f2 (x,y) , (3)

where function f2 has isotropic behavior. That is, suppose the dependence

of f is solely on the distance from the origin of coordinates:

f2(x,y) = fl( X (4)
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lhen (3) becomes

dx dy exp(iux * ivy)f x+

2n odr Jo(wr) r f1 (r) , (5)

where we changed to cylindrical coordinates and have defined

S2 ) 12 (6)

lhus, (5) is of the form of (2), upon identification of g(x) as x f1(x).

Suppose in (3) that the f2 dependence on x,y is more general than (4),

ndmely of the form

f2(Xy) f x) b 2p a b (7)

which allows for a general center point of symmetry xo ,Yo, as well as a

tilted elliptical shape. ihen substitution in (3) yields, after a

cylindrical coordinate change, the result

_2wa b ex3ix r (), (8)

(1 2 -! exp(iux0  I ivy0  dr r 1 r2... . I-12 0 0V o o(wr )  r 1, r 8

-p o) 0o

where now

2  2 2 a 1/2
a 1 a- buv (9)

3
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Again, the fundamental Bessel transform of the form of (2) results, where

g(x) is x f (x).

On the other hand, if G(w) is specified in (2) for w > 0, the

corresponding solution to this integral equation is

g(x) = x dw T0(xw) w G(w) , (10)

0

which is again a Bessel transform of the form of (2).

Thus, we have presented several instances where the transform given by

(2) is of interest and must be accomplished accurately for large as well as

small arguments of the transform variable w.

4
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I[NEAR APPROXIMATION

ihe integral of interest here is

X
r

G(5) dx J0 (X) g(x) , (11)

where left-end point xt could be zero, and right-end point xr could be

taken so large that g(x) is essentially zero for x > xr' (If iis

negative, the values of g could be folded over to the positive x-axis, using

q(x) #- g(-x) as the new integrand, since .o (wx) is even in x.) We break

interval x ,x r into a number of abutting panels, each of the same width h,

and fit g(x) by straight lines over each of those panels. The fits for the

left-end point and an abutting (internal) point xn are depicted in figure

I, where it is temporarily presumed that the adjacent sample values of

abuttn

left
end

x +h x.;-h 4.xh

Figure 1. linear Approximations to g(x)

5
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function g(x) are zero; this allows us to isolate the contribution of each

sample of g(x) to the total desired in (11). The straight lines pass

through the function value gn = g(xn ) at sample value xn, and are zero

at the adjacent sample points. h is the sampling increment in x applied to

g(x). The situation at the right end is the mirror image of that at the

left end, depicted in figure 1.

If w is zero in (11), the approximation afforded to the integral by

means of figure 1 is obviously

G(O) h g1 + gg.1  ' r § 1 grJ

h g(xA) . g(x ) .. . + g(Xr) + 1 g(x 7  for 0,

L2  ~.r--l 2

which is just the Trapezoidal rule. For w > 0, considerably more effort is

required; there is no need to consider w < 0, since Jo (wX) is even in

Before we get into that derivation, we must introduce some auxiliary

functions.

SPECIAL FUNCTION DEFINITIONS

Define the integral

U

A(u) f dt Jo(t) (13)

0

6
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lhs function LarinuL be evaluated in closed form; a table of A(u) is

available in [5; pages 492-493). On the other hand, the integral

U

S dt t 3 (t) = u JIM (14)

0

is immediately available by use of [5; 9.1.30]. And two integrations by

parts, coupled with (13), yields the result

uud t2 u2
odt t (t) = u l(u) + u Jo (u) - A(u) (15)

0

We will also find use for the auxiliary functions

u

Bo(u ) E A(u) -u Jo(u) f dt t (u - t) Jo(t) , (16)

0

and

U

BI(u)= A(u) - 3l(u) = dt - M Jo(t) (17)

0

All of these functions, A, B0 , B, are zero at the origin and are odd.

Numerical evaluation of these functions is considered in appendix A.

7
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ABUIIING POINT

For an abutting (internal) point x in the interval (xXr), as
n r x

depicted on the right-hand side of figure 1, the contribution to integral

(11), due to this single sample point gn = g(xn ), is

x x +h

Idn = j d Jo(Wx) gn (1 + Y + 3 dx Jo(wx) gn (1 - y) , (18)

x n-h x n

where we have defined

X - Xn (g
Y h (19

We now assume that the n-th sample point xn is taken such that

Xn =n h for < n < r . (20)

This makes

xr r
x xr = rh, i.e. - - rational (21)

This constitutes a restriction on ratio x in (11); it has been adopted

here in order to minimize the number of calculations of the Bessel function

3 later, when we consider the multiple values of u desired for (11).0

(The procedure presented here can be extended to the general case where

is arbitrary and xn - f . nh, if desired.) If x is zero, then the

choice in (20) is no restriction at all.

8
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APPROXIMATION TO INTeGRAL

An important parameter in this numerical integration procedure is the

quantity

E = wh (22)

which is the product of "radian frequency" w and the sampling increment h.

As we shall see, values of e near n and 2n will constitute points of

considerable aliasing; see [4; page 400] for a discussion of the Fourier

transform case.

When the procedure in (18)-(19) is extended to include the left-end and

right-end points of integral (11), and the various integrals evaluated with

the help of (13)--(17), the total approximation is given by appendix B in

several alternative forms, one of which is (B-7):

co G(L)) _ 1 - (A~ + 1) $1 Bl(0 I g J1 (Q0) +-

[r gr-I - (r - l)gr] Bl(re) + gr J1(re) +

r-l

+- 7 n[gn+l- 2gn + gn-1 ] Bl(ne) , (23)
n=l+l

where

gn = g(xn = g(nh) (24)

Reasons for this grouping of terms, including speed of execution and storage

requirements, are discussed below.
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SAMPLING INCREMENT FOR

When output variable w in integral (11) is restricted to multiples of a

sampling increment A, according to

= kA for I < K, < k < K2 , (25)

then ne = nkAh, meaning that the arguments of the B (u) function in (23)

are limited to integer multiples of hA, the product of the sampling increment

in input variable x and the sampling increment in output (transform)

variable w. The explicit relationship for G(w) = G(kA) is given by

specializing (23) to the values (24), thereby obtaining

kA G(kA) 4 9g+1  + j~9 1) e] B 1 UkAh) X1 (AkAh) +

+Egr- - (r - l)gr] B1 (rkAh) + gr 31 (rkAh) +

r-l

+ ;57 n gn+l - +gd gn-_ B,(nkAh) for k > 1 (26)
n=,R+l

COMPUTAIION TIME CONSIDERAIIONS

Thus, we need evaluate BI(u) only at u = mah, where m is an integer.

Furthermore, not all values of integer m will be encountered as n and k sweep

out their respective values given by (20) and (25). And since B (u),

defined in (17) and (13), is the most time-consuming aspect of the

computdtion of (26), it behooves us not to compute BI(mAh) at values of m

that will not be encountered, and not to recompute B1 (mAh) at values of m

10
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that are encountered more than once. ihis latter situation arises when m is

highly composite; for example, m = 12 = 4*3 = 6*2 = 12*1 could be

encountered several times as n and k vary in (26).

In order to incorporate this time-saving feature into the Bessel

integral evaluations required by (26), the values of B1 (nkAh) are computed

only once and stored in a one-dimensional array at linear location m = nk.

Unfortunately, this speed-up feature is achieved at the expense of

considerable storage, for if n and k range up to N and K, respectively, the

one-dimensional storage array must have NK cells, of which most are empty

when N and K are large.

When N and K are so large that storage is not feasible, sulh as when

x r in (11) is large, and large w is desired in (25), then the alternative

procedure of direct brute-force evaluation of (26) for B1 (nkAh), repeated

as often as necessary, but without storage, is employed. Recomputation of

1 (mAh) for some m values occurs, but evaluation at unused m values never

does.

lhus we have two alternatives and two corresponding programs for (26):

one faster routine which may require considerable storage, and a slower

procedure utilizing very little storage. The former is recommended when

feasible, while the latter furnishes a back-up position. Programs for both

procedures are listed in appendix B.

11 __
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BEHAVIOR FOR SMALL 0

When 0 is small, differences of functions with similar values are

required in (23), as may be observed by the linear u dependence on the

left-side. The appropriate series development for this linear approximation

2
approach to (11) is given in (B-ll)-(B-12), through order 6 . Additional

terms to order (4, E6 can be derived by extending the approach given

there; however, an easier technique will be developed in the next section.

12
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PARABOLIC APPROXIMAIION

ihe integral of interest is again

X,

G(w) - dx Jo(Wx) g(x) (27)

xA

However, now we approximate g(x) by parabolas over abutting pairs of panels,

each of width h. ]he fits for a mid-point, an abutting point, the left-end

point, and the right-end point are illustrated in figure 2. Again, the

.;- h x, x.+ h K-2h x x,+2h

left r°ht
end end

- x ---- - x

)+h ) +2h )(,-2h )x-h x,

figure 2. Parabolic Approximations to g(x)

13
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contribution of each sample value gn g(xn ) is isolated, by temporarily

presuming that the neighboring sample values of g(x) are zero. The variable

y in figure 2 is again the normalized quantity

h 
(p8)

where h is the sampling increment in x applied to g(x).

If w is zero in (27), the approximation afforded to the integral by

means of figure 2 is

G(O) q F g + 4gA+ 1  + 2 g, +2  .. -, 2 gr_2  + 4gr_ 1  4 g =]

(29)

Sg (xjt) + 4g(x.+) + 2g(x + 2) +... 2g(X 2 ) 4- 4g(Xr 1) - g(x r

which is Simpson's rule.

APPROXIMATION 10 INTEGRAL

Since J in (27) is even in w, we only need to consider w > 0 in the

following. The derivation of the approximation to integral (27), by means

of the parabolic fits in figure 2, is carried out in appendix C, culminating

in (C-I0)-(C-12):

14
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2wo G(w ) 02SAi Bo ka) - BIlao) - 29, J1(98)-
2

2 S B (re) + Q B (rO) f 2g 3l(re ) +

02 r o ri rI

r-2 r-2

2 ',5 On B. (no) - Rn B (no) (30)

n0 2 n =.k+ 2

The auxiliary sequences utilized in (30) are defined below:

= g,+2 - 2g +1 +g

S -- gr 2gr-1 gr-2

Q U + 1g 2- (, + 2) g +1+ + 2)( 1

Qr (r - 2)(r - 1)gr - 2r(r - 2)g r-1 + r(r - l)gr 2  (31)

and

Dn gn4-2 2gn+l + 2gn-I gn-2

F =g -4g 4-b ~4forn =
Fn gn+2 4gnl " 6gn - - gn-2 ( 2)(2)(r - 2) (32)

R n2D h nFn n n

ihe functions B (u) and B1(u) are those defined in (13)-(17), and0

the slash on the summation symbol in (30) denotes skipping every other term,

after starting at n - 2. A shorthdnd notation that will be used here is

n = 2, ) + 4 ,..., r - 4, r - 2 = +- 2)(2)(r - 2) (33)

15
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Several important observations should be made about the result in

(30)-(32). The four quantities in (31) are evaluated only once at the end

points n =,t and r. The sequences in (32) must be evaluated at all the

points listed in (33), that is, at every other interior point. All of these

computations should be done once and stored, when given the function g(x),

the limits x,,X , and sampling increment h, prior to ever considering

which w values will be of interest in (30). Input function g(x) must be

evaluated at all x =x = nh for n

The time-consuming calculations of B (u) and B1(u) in (30) are only

necessary at the values u = no for n n',(2)r, and need not be evaluated at

any of the in-between points n = (, l)(2)(r - 1). lhe Bessel function

Jl(u) need only be evaluated at end points u =- e and ro; however, this

quantity shows up as a free by-product of evaluating Bo(u) and Bl(u), by

the method indicated in appendix A.

SAMPLING INCREMENT FOR

When output variable w in desired integral (27) is restricted to

multiples of a sampling increment A, according to

kA for 1 I K1 < k < K2  (34)

then

e = wh kAh , (35)

and (30) takes on the form

16
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2kA G(kA)

1 g S BoGkAh) - BlkAh) - 2gA J1CRkah) -
(kAh) ,

1
- Ih) S Bo (rkAh) + Qr Bl(rkAh) f- 2g J (rkAh) +

r-2 r-2

+kah) _L Dn Bo(nkAh) - j Rn Bl(nkAh) (36)
(kAh) 2 e A- nn0 :45n=,R+2 n=,R+2

At this point, the discussion in the sequel to (26) is directly relevant

and should be reviewed. The only change in the presentation is to replace

BI(u), there, by both B0(u) and BI(u) here. We again end up with two

alternatives and two corresponding programs for evaluation of (36): one

faster routine which may require considerable storage, and a slower procedure

utilizing very little storage. Programs for both procedures are listed in

appendix C.

BEHAVIOR FOR SMALL a

When 0 is small, differences of functions with similar values are

required in (30), as may be observed by the linear w dependence on the left

side and the 1/02 dependence on the right side. This behavior is also

typical for Filon's method, and indicates the need for a series expansion in

powers of 0 for the right-hand side of (30) when 8 is small; see

(5; (25.4.53)],for example. ]he appropriate series development for this

parabolic approximation approach to (27) is given in (C-15)-(C-17), through

2 4 6
order 62. Additional terms to order 0 , 8 can be derived by an

obvious extension of the approach given there.

17
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EXAMPLES

Two examples will be considered in this section; the first is a Rayleigh

function,

g(x) = x exp(-x 2 /2) for x > 0 , (37)

for which Bessel transform (11) is [9; 6.631 4]

G(w) = exp(-w 2/2) (38)

The second is a Gaussian function,

g(x) = exp(-x ) for x > 0 , (39)

leading to [9; 6.618 1]

G(w) = l/2f'exp(-w 2/8) 1 0(2 /8) (40)

These two examples are very different, in that transform (38) decays very

quickly for large w, whereas (40) decays very slowly for large c. In fact,

for the latter case [5; 9.7.1],

G(w) - I/u) as w -* +o. (41)

18
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ihis difference will enable us to investigate both absolute and relative

errors of the approximate numerical integration procedures developed

earlier, over a wide range of values of .

ALIASING

ihe Bessel function J is rather similar to a sinusoid; in fact, for

large z [9; 9.2.1),

So(Z) ~ cos(z - as z 4 +c. (42)

ihen when argument x in transform (11) is sampled at increment h, we

encounter the behavior

jo(On)  o( n)  j(Bn 2 /2

) J(whn) J(on) - / cos n - (43)

for large on. Now when 8 2w, the cosine yields the same values as for

): 0; this leads us to expect larger errors for the numerical integration

procedure when 0 is near 2w.

For a Fourier transform, this aliasing effect was studied quantitatively

in [10; appendix A] for both the irapeioidal rule and Simpson's rule. The

former rule was shown to have a large aliasing lobe at 9 = wh = 2w, while

the latter rule had an additional large lobe at 0 = w, due to the

alternating character of the Simpson weights; see [10; (A-6) and (A-8)].

This leads us to anticipate that the linear approximation procedure

developed here for Bessel transform (11) will be subject to aliasing near

19
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0 = 2w, while the parabolic approximation will be degraded earlier, namely

near e w r. This will be borne out by the numerical examples to follow.

GRAPHICAL RESULTS

The Bessel transform numerical integration rule for the linear

approximation to g(x) is given by (23) or (26), while the rule for the

parabolic approximation to g(x) is given by (30) or (36). The exact

transforms (38) and (40), and the absolute errors associated with these two

rules, are depicted in figures 3 and 4 for the Rayleigh and Gaussian

functions g(x) of (37) and (39), respectively, with sampling increment

h = .1. The ordinates in all figures are the logarithm to the base 10 of

the corresponding results, while the abscissas are linear in W or 8. The

upper limit, xr, of integration in (2) or (11) is taken large enough to

guarantee a negligible contribution (less than 1E-20) to the truncation

error.

In figure 3, the error for the parabolic fits is initially lower (for

small w) than for the linear fits; however, the linear error decays rapidly

with w, and stays below the parabolic error for larger w. Both absolute

errors flatten out and are not increasing with w, at least for this range of

values. The maximum value of e is .8, as indicated in the figure.

20
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For the Gaussian function g(x), the parabolic error in figure 4 is

everywhere less than the linear error. Both errors near and at W = 0 are

extremely small; this fortuitous result for the linear fits is fully

explained in [6; pages 92-93], especially in the paragraph under (3.4.5).

It has to do with the fact that the integrand in (11) for this Gaussian

case, namely Jo (Wx) exp(-x 2), has zero odd derivatives at the limits of

integration. This is not the case for the Rayleigh function; hence the much

larger errors at w = 0 in figure 3 result.

COMPARISON OF PROCEDURES

To demonstrate the benefits to be accrued from the fitting procedure5

derived in this study, a comparison of the absolute errors for four different

procedures is presented in figure 5 for the Rayleigh function (37). The

sampling increment in x is h = .03. The variable w now covers the range

(0,120); the point where e = i is indicated by a tic mark on the abscissa.

The Trapezoidal result is obtained by applying it to the complete

integrand J (wx) g(x) of (11). The error is essentially constant for all w,

including the region near e = ir; thus, as expected, aliasing is not

significant at 0 ir for the Trapezoidal rule.

Application of the standard Simpson's rule to the complete integrand of

(11) yields a very small error near w - 0, but a rapidly increasing error

with co, and a very large aliasing lobe centered around 8 w. lhis confirms

the expectations presented earlier in this section.

22
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For the case of linear fits to g(x), rather than 3 (wx) g(x), the

error drops dramatically, by four orders of magnitude as w increases,

similar to figure 3. Furthermore, there is no aliasing at 0 = w.

The situation for the parabolic fits is that the absolute error starts

out small and remains so, for all w < 120, there being a slight aliasing

effect near 0 = w. However, it is 5 orders of magnitude smaller than the

Simpson error in this region of w.

The results in figure 6 extend the abscissa to cover the range of

(120,240) in w; that is, these curves are an extension of those in figure

5. Now all rules suffer aliasing in the neighborhood of a = 2w. The

absolute error for the linear procedure increases by 2 orders of magnitude

near 0 = 2w, while the parabolic error is just slightly larger; however, the

latter is 6 orders of magnitude better than the standard Trapezoidal and

Simpson rules for numerical integration. All of these results confirm the

predicted presence and location of aliasing discussed earlier.

ERROR DEPENDENCE ON SAMPLING INCREMENT

In figure 7, we investigate the dependence of the error on increment h

employed to sample x in (11). Here we apply the linear fit procedure to the

Rayleigh function (37). The absolute error for small w (< 2) decreases by a

factor of 4 as h is halved; that is, the large error bump near w = 0

behaves as h2 for small increments h. On the other hand, for larger w (> 5),

24
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the error decreases by a factor of 16 when h is halved; that is, the
h4

"saturation" level of error behaves as h for small h. The slight flare

in the error curve near w = 50, for h = .1, is an indication of the

beginning of aliasing; that is, e = 5 here, which is near the 8 21r

location.

Still considering the Rayleigh function (37), but now switching to the

parabolic procedure, the results in figure 8 demonstrate that the error

drops by a factor of 16 as h is halved; thus, the error dependence is h4

for all o. The wiggles in the h = .1 curve near 30 are due to aliasing,

since E t for w lOI = 31.4.

When the function g(x) is changed to the Gaussian example of (39), and

the linear fitting procedure is employed, the errors are depicted in figure

9. Here, the error dependence is according to h2 for all w, until

aliasing sets in. Aliasing is present in the h = .1 curve near w = 64,

since 8 2, at w = 62.8 for that curve. Comparison of these errors with

the exact answer in figure 4 reveals that the relative error is constant in

the range 4 < w < 56.

When the parabolic procedure is used instead on the Gaussian example,

4
the error dependence is again according to h , until aliasing becomes

dominant. The aliasing lobes in the h r .1 curve in figure 10 are centered

at 0 = i' and 2i, as before. The large increase in the error for the

h .025 curve, when w exceeds 50, is a feature not seen previously. It may

be due to the sum of distant aliasing of sidelobes which decay very slowly

26
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with w; in fact: from (41), the exact answer only decays as l/w. The rapid

decay of the Rayleigh transform, (38), apparently precluded this type of

error from appearing in any of the numerical cases considered here for the

Rayleigh g(x).

28
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SUMMARY

There is a marked difference between the form of these results and the

Filon equations; namely, the term multiplying sample value gn = g(xn)

(in (B-3), for example) varies with n in such a fashion that no

simplification or factoring is possible. In order to better explain this

complication, let us investigate the evaluation of (18) when J (wx) is

replaced by exp(iwx); that is, consider evaluation of a Fourier transform,

rather than a Bessel transform, for the moment. When the linear fits to

g(x) in (18) are then integrated, there follows

In q h exp(ine) 1sin(/2 2(4
n02 = (44)

But the bracketed term here is a common factor (indepen..it of n) that can

be removed from the summation on n. This fortuitous simplification does not

hold for the corresponding result (B-3) here, because whereas exp(iu) is

periodic, Jo (u) and A(u) are not.

In an effort to recover some of this loss in execution time, we

therefore grouped the terms in (B-6) in an alternative form, pivoted around

B1 (nO) rather than g ; see (B-7). Perhaps another rearrangement of

terms would be more advantageous for some purposes.
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It is possible to extend the results here to other Bessel transforms.

For example, suppose we are interested in the evaluation of first-order

transform

f dx J1(wx) g(x) (45)

and we approximate g(x) either by straight lines or parabolas. lhe

integrals in (13)-(15) are then replaced by

u~u

I dt J1(t) 1 Jo (u)

0

U

I dt t JI(t) = Bo(U)

0

dt t 2  Jlt) = U 2 (u) 
=  2u Jl(u) - u Jo(U) , (46)

0

where we used [5; (11.1.6) and (9.1.30)] and (16). Since all of these terms

have already been encountered here, extension to transform (45) would not be

difficult.

For the evaluation of the alternative transform

dx x g(x) , (47)

30
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we need the additional result [5; (ll.l.1)J

U 00

dt - =2k(U)

0 k=l

4[J(u) * 2 J4 (u) + 3 J6(u) ] (48)

But this type of term is easily evaluated by means of the downward

recurrence technique given in appendix A. In fact, immediately following

the single line Se Se + E, we have merely to add the line Sx = Sx + Se;

when the downward recurrence is completed, the bracketed term in (48)

results in storage location Sx (after the scaling correction).

31/32
Reverse Blank
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APPENDIX A

NUMERICAL EVALUATION PROCEDURE FOR BESSEL INTEGRALS

The three fundamental Bessel integrals that must be evaluated are given

by (13)-(17) as

U

A(u) £ dt J (t) , (A-1)
0

U

B0 (u) = A(u) - u 3o(u) - dt t (u - t) 30 (t) , (A-2)

0

B1 (u) = A(u) - 31 (u) = dt(I - J0(t) (A-3)

0

By expanding J in a power series [5; (9.1.10)], and integrating term by
o

term, there follows from (A-I),

A(u) = 21 (-u2/4) k u3  5  (A-4)2 5-- u - + U ..2
k=O k! k! (k+ 112 32

When this result is coupled with the series expansions of 3 and J1 in

(A-2) and (A-3) respectively, there follows

A-l
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u) (-u2 /4 ) k 3 _ 5  u 7

o 0(u) - 4 k! (k 3) (k 3) 6 80 +  2688 (A-5)

k=O (

and

2 k 3 5
B' u 0 (-u2 / 4 ) u u uBl(U) 4 L.1 -2 48 1920-(A)

k4 Q k! (k + 1)! (k + 2)

Although these power series could be used for small and moderate values

of u, they are not useful for large u, due to the loss of significant digits

caused by the alternating character of series (A-4)-(A-6). In fact, we

will find that a downward recurrence will yield all the values of A, B0,

B l J0 and J very efficiently for small u, while an asymptotic expansion1 1'

is equally attractive for large u.

DOWNWARD RECURRENCE

We start with [5; (11.1.2)] and (A-l):

A(u) = 2[3 1(u) + J3 (u) + J5(u) + ... ] (A-7)

Thus if we can evaluate all the odd-order Bessel functions, we can get A(u)

from their sum. Also, Bo(u) and BI(u) follow immediately from (A-2) and

(A-3), if we can additionally get J (u).
0

But the Bessel functions satisfy the downward recurrence [5; (q.l.21),

line 1]

A-2
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J (u) : 2 (m + 1) 3 (U) - Jm+2(u) (A-B)
m u m+1m-(u

for m > 0. lhis recurrence can be started by guessing at JM(U) = 0,

JNl (u) = 1E-250 for example, and evaluating downward via (A-8) to m r 0.

Since the error increases much slower than the size of the terms in (A-8)

[5; table 9.4], the relative error of the terms is very small for the

smaller values of m, if M is chosen large enough to start with. In order to

accurately establish the absolute level of the sequence of lJj values, we

then use the check sum formula [5; (9.1.46)]

Jo(u) + 2[3 2 (u) + J4(u) + ...] 1 . (A-9)

In order to realize 15 decimal accuracy in A, B0  B, 3 it has been

found sufficient to choose even integer M as

M = M(u) r 2 IN20 + .56u - )+ 12 for 0 < u < 45 (A-10)
M2 Mu12 + u

While conducting the downward recurrence on m in (A-8), an even sum of

J M I- JM-2 ... , and an odd sum of JM-1 + JM-3 + ... , are maintained.

After completion to m = 0, the even sum is subject to constraint (A-9), in

order to establish the scale factor that must be applied to all the desired

outputs; this is to correct for the initial arbitrary (incorrect) guess of

J M1(u) = IE-250. With this scale factor in hand, the odd sum in (A-7)

can then be modified by means of one multiplication for the correct absolute

level for A(u). Since the last two quantities yielded by recurrence (A-B)

A-3
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are 31(u) and J0 (u) (after scaling), we then have all the necessary

ingredients to determine B (u) and BI(u).

No array declarations or array storage is necessary in this procedure,

since there is never any need to "go back up" the recurrence and correctly

scale the t3m(u)l terms. This has been guaranteed (through numerical

investigation) by the choice of M in (A-10). A further economy in the

program for this two-term recurrence (A-8) has been achieved by splitting it

into even and odd versions, thereby avoiding the usual temporary storage of

the left-hand side of (A-8) until the right-hand side is updated. This

compact program is listed below as subroutine SUB Besj. For given u, it

outputs values for J o(u), J(u), A(u), Bo(u), B1(u), provided that 0 < u < 45.

ASYMP101IC EXPANSION

For large u, the starting integer M in (A-10) gets too large to make

downward recurrence a viable procedure. Instead, we resort to the

asymptotic expansion [5; (11.1.11)]

u

A(u) f dt 30 (t) 1 I -

0

a)/2ok(u-l (- a a21
- () os - sk u - (u -=2k (A-11)

k=O uk=O u

as u + cc; here, we also used the definite integral result that A(C.) 1

[5; (11.4.17)]. The values of the coefficients are [5; (11.1.2)]
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k

ak = ) 1 (A-1 2)
s=O2S

and are conveniently obtained by recursion

1
s =( I _ 1 2 s for s > 1 (A-13)s 2Ss s-

The number of terms required in the summations in (A-l) depends on the

value of u and the desired accuracy. For u > 45 and 15 decimal accuracy, it

has been sufficient to terminate (A-11) at k = INl(u/2).

Since (A-li) yields only A(u), it is necessary to calculate 3 (u) and

Jl(u) additionally; this has been accomplished by use of [11; section 6.8].

All of these quantities are evaluated by means of subroutine SUB Bessel

listed below. For input u > 0, this subroutine yields values of 3 o(u),

JI(u), A(u), B (u), Bl(u).

A-5
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10 ci suB Bese SS. "-, JO', J I, A, BO, B1I A = I NTEGRRIL '0C,>;X .is And -J- (
20 DOUBLE K,1 INTEGERS
30o IF X>045. THEN 60
40C CALL Be s >2 JO, 1, A , B0, B 1) I DONNWAP D PEC UPRENC E 9. 1.71
50 SUBEZIT

E I= I NT 2'2 I AS.YMPTOTIC SERIES 1 1.1. 1 1 1

F=. Rxl.x

90 T=.25
100 A =I. 25
110 Re=.625*Rx~
120 IrnPlI.
130 FOR K1l TO I
140 P=-P

150 Sn= tK+
160 F5=S-r-.5
170 F=F*F5*R:K
180 T=T*F5)/'kSri+Sn,)
190 Ai=At+T

00 Be=F*A
20 IrnIri+P*Be

220~ Sr=ni 1.
30 F5=Sn-. 5

240 F=F*FS*Rx
2 50 T=T*F5/ (Sn+Snrs
2160 Ai=A+T
270. Bo=F*Ai
280 RE=RE+P*Bo

20 IF Be*BetBo*Bc'.1.E-26 THEMI 310
300 NEXT K
310 F=X-. 78539rE:16:339744828

T=.7978845608020- 61541
:330:: A= . -T*Si)R(RK)*"Re*COS F")-IrI-I*SINA(F))
340 JO=FNJo(X) Jo = Jo(X)
:350 J1=Ft-Jl1X' J I = J1(I
360 B0=A-i,*JO BO = AP(X) - J Jo':X

37 BI = A-J I B I = Al(X) - 110<)
-:so SUBEND
390 1
4 00 SUB Be a yU, JO, J1I, A, BO,B1I JO = J o(U), J1 = J1'U)
4 10C IF U.A3. THEN 450J A = A"(U.) INHT E GRPAL' 0, U:dt Jc,.
420 0 =1I B 0 = A('U) -U Jo(U)
4 30C J1=A=Bo=B1=0. B I = A(U) - 1U)
440 SUBEXIT
450 DOUBLE Mc,Mls IINTEGERS

46t.0 Mc =2 * INT ( 20. +. 56 *UJ-17 5. 12.+4U)+ 12
470 T=2. -'U
480 Se=EO.
490 So=O1.E-250
500 FOR Ms=Pc TO 2 STEP -2
510 E=T*(Ms+1)*O-E 9.1.27,1
520 Se=SetE
5310 O=T*rls*E-O 9.1.27,1
540 So=So+O
550I NEXT Ms
560 E=T*O-E
570 F=1./,(Se+SE+E) 9.1.46
580 JO=E*F
590 J1=O*F
6 00 Ai=.So*So)*F I 1..
10 BO=A-U*.J0

620 B1I A- J1
630 SUBEND
640

A-b
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650 rEF FNJJoC:.> JOX. k~a Hat #5845, E6546, and 6946
E60 y = AB;S .X~
670 IF Y/-8. THEN 770
680 T=Y*Y
E690 P=227-.14 9 0 4 5 5:36.033-T*(-5 5 13 :34 . 564 7 70C7 522 - T-,529 2. 17 1 3 03845574)

70 P '3448917 1877869. -T*: (47765559442673. 58::- T* -46.21722250,1-1 . 71803- TrPB.)
7.10 P=1859623-1176-218978-04. -T*(44145829391615982.-T*P,)
72 0= 2 04 2 514 83. 52 1 3*4 357 +Tt *f49 40C,30. 7944 918 13 92 + T * 84. 720- ,3 6 75 61 71 50 4 +T)

73 02445013589. ** 51564479. 752+T<f 643986-i74535. 133256tT*0))

'40 0=185962317621897733. +T*Q
7 50C Jo=P'Q
760 RETURN Jo
770 2=8. "C
780 T=2*Z
790 Pr 2 2O04. 50 1043-9 6 518 804 +T* (12.7 75.8 5 748 714 19 9+T 9 00C4 7 93 474802 88 03
S,0 Rri n8554. 8'2254 1506661 17+ T*(8894. 43- 7 5 329 6 06 19 94+T Pn
810 Pd=22-- 14.0488519147104.T*(1:30J~.88490'049992 3808+T.
820o Pd=8554. 822541506662 8+ T*89 0 3. 836E.14 17?09595 4 +T *P d)

8:30 1r 13-996690680+T*( 1 0497327,98"'245 548+T *. 00935259529403 19)
840 0n3?-".510534954957112+T*(46.093826-814625175+T*Qn.)
850 Q-d=921.5661.-97552b ,53090+T*(74.4 8189741411179-
860 OdJ=2400.6742:137117267'5+T*(2971.9837452084'920+T*0d')
870 T='r-. 785398163:39744828
880( io= 28 2 094 7 9177 3,8 7820Q R k .(C0 S (.TPPr/Fd +S I NT)Z*O nOd)
890 RETURN Jo
900 FNEND
910
9 20 DEF FNJ1(X) .31(X) ma Hart #6045, 6--747, and 7147'

940 IF 7>*;8. THEN 1040
950 T =Yler

F'1 c =. 1 10735.222445 37300'E-1I0-T*. 6-5194 310?1744316 1E-14
970 F=. 491059942765551294E-5--T* . 9382 1'93365140744!5E-8.-T*P.)

90 P=. 398310798395233T* .-. 0794496171E-2-±P
9190 P=5878. 78 77666568200-T*.(61 . 2 18769973569439-T*P.

I1000o P =695+3 64 22'. 6 329:385 0- T * ( 8 356.785. 48 7:3 4 8914 3- T - f.32090 2. 7 4E.8 539 4 7 0- T*P)
10ci10 O= 13-9072845. 269769+T*(67o534. 6:8354822993+Tt (1284. 59345396630194T)
1020 11=X*P/Q
1090 RETURN J1
1040 2=8./yl
1050 T=Z*2

10 Ci P ri=3 13 2 . 7 5,29 5 63550 69 5+ T* 1 7 4. D,1 :3,7 97 4 8':,7 902 5 + T 1. 22505 3 76 4:35 90 4 3
10 70 Fn =129 09. 184 71896188 1 +T *(13":09 0.4205 110 3506 5 +TtPnr,
106i0 Pd302846006T*190715081T
10,90 Pd=1 2909. 184718961879+Tr 1306P' 6:. 7.074~2+-d

110 Qn53 .. ' 36381 916E.+ T *(3. 7994 4 53796 9806 73 + T-. 3£3466.4 760347 11)
1110 Qn~t=144.652828749952: 09tT*(174.42 916-8909242J9+TtI)n-t
1120 Od=1119.109852704?487+T*(85.22- 920643413404+T:
1130 Od=3085.92701333j--2317-2+T*(37-34.34010O60163018+T*ud'
1140 T=Y-2.356194490192:3448
1 150 J1I=. 282094791?7387820*SQR ( Z*rC0D, (T)*Pn, Pd-cSI N:.T.*2.0n.'d)
1160 IF XW0. THEN J1=-J1
1170 RETURN M1
1180 FrIEND
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APPENDIX B

DERIVATION OF INTEGRATION RULE FOR STRAIGHT LINE FITS TO g(x)

The situation of interest here is represented in figure 1, where

straight lines are fit to g(x) between adjacent samples of g(x), taken at

sample points 1xn1. In particular, the contribution to integral (11) of

an (internal) abutting point xn was set up in (18)-(19). By letting t Wx

in (18), and using (19), (20), and (22), namely

-n x = nh wh , (B-l)Y h ' n

there follows, for the n-th contribution to the integral,

no

n

(n-l)e

(nfl )O

+ ---: dt J (t) l + n - , (B-2)
0 8

nO

where g n g(x) g(nh). By reference to the auxiliary functions defined

in (13)-(17), the sum of these two inturals can be expressed in the compact

form

fn+ I1) B1U[(n +- 1)9] -2n 8 [no] + (n - 1) Bl[(n -1)813

for < n < r (B-3)

B -l
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Ihe procedures in appendix A are now directly applicable to the evaluation

of (B-3) for any n.

For the left-end point x2 depicted on the left side of figure 1, the

corresponding contribution to desired integral result (11) is, using (B-l)

again,

h

I dx J Gwx) (1 0-Y

X1

(RQ+l )@

$ dt 3 (t)(il y

r0

Sk + 1 ) BJI + 1)4 81 + I) B J~jel (B-4)

lhe corresponding contribution to integral (11) for the right-end point

x r is given by

x

Ir = S dx Jo(wx) gr (1 + y) =

x -hr

g r 
or

- dt J(t) r I
(r-l)9

=g r -1 ) Blrr 1)4- (r - 1) Bl [re] 3[ro l (B-5)

B-2
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(As a check, combination of (B-4) and (B-5), upon replacement of Rand r by

n, yields (B-3), as it should. The "end correction terms" in J1 cancel

out for all internal points, n.)

lhe resultant approximation to desired integral (11) is given by the sum

of (B-3)-(B-5):

xr 
r-1

G(5) dx 3o(wx) g(x) I + Ir + _ I n  (B-6)

X1 n=,2+l

This particular grouping of terms is according to the function sample values

gnl m jg(nh)l An alternative grouping, according to the samples of

function B (u) instead, is given by

GO()1 ) [g,+I - U+ 1 ) ] B1G00) - g

+r gr-l - (r l)g r Bl(re) + gr Jl(r e ) +

r-l

+ j5 n .gn 2gn "gn-l Bl(ne) (B-7)

n=,4+l

Whereas B1(no) must be evaluated for all < n _< r, the Jl function need

only be evaluated at the end points Q and re.

B-3
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When w is restricted to be multiples of a sampling increment A, that. is

w = kA for k =  1, 2, ... (B--8)

then (B-7) yields, for k > 1, the approximation

kA G(ka) 9[g ('R + l)g B1CUkAh) - g~ 1 ~~)4

+ gr-l (r - l)gr]Bl(rkAh) + gr J1 (rkAh) 4

r-I

+ :-5n[gn+i- 2 gn gn-l B,(nkAh) (8-9)

n = I-

where

gr = g(nh) (B-1O)

Since n and k are integers (see (PO) and (8-8)), the evaluation of

B(u) in (B-9) is confined to integer multiples of Ah, i.e. u = mAh.

Further discussion on how to take advantage of this feature of (B-9) is

given in the sequel to (26). The end result is that we have two alternative

procedures for evaluation of (B-9) and two corresponding programs: one

faster routine which may require considerable storage, and a slower

procedure utilizing very little storage. Programs for both procedures are

listed below.

8-4
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B[HAVIOR FOR SMAIL 0

When 0 is small, the differences of like quantities in (B-3)-(B-5) can

be circumvented by expanding B and J in power series in e. Using the

facts that

3U U
B (u) - - u as u 4 0

3U U
J(u) - u - - as u - 0 , (B-ll)

the above results reduce to

n g gn h [1 4 n,)

I hI _ I2(tl2 , Z j
2 h 4

1 1 h l I 4Ir - 2 r + I, (B-12)r 2 r ~ 4\ 3

as 0 -) 0. By use of the power series expansion developed for B (u) in

appendix A, these results could be extended to order 0) , 86 if desired.

lhe total contribution to (11) is given by the sum in (B-6). As 0 - 0,

this reduces to the lrapezoidai rule, (12).

B-5
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10 ZER:-TH :RIER BESSEL TRANSFORM USIN; LINEAR INTERFOLA TION.
20 INTEG;RAL, I ,:::r dYX Jo'. WX., gt :-. FOR =I..= =1,i4LJ2 IS STORED ItH
: cw IS 1,J-: .j , h.re 1 = K. S*D, I',. Faster ,igh-t, agw.

40 Del 1=.025 I NCREMENT 'h IN
50 L=O Xl=L*De1.., L3=12

I4 ' =4r" =R*De l :% P:L
70 l ,=.2 I NCREMENT (a) IN W
60 K 11 I Wl1=KI*Del , VI = '
U [2=40 W2=K2*Iel,,, 1 2 = I

100 DO1BLE L,F,K11, 2 1-*0 ,LI,RI.t-,f ,I I INTE, ER'-.
1 10 1 1 Ii -.C, 0 C, , 1, 5 000 ,, C 1 J l O : , J; , 'i 1 r 10 0 ' 1 00):
120 Kom 1
1 3. 0 -: I = r-1 H >:: i F:. I, I
140 LI=L+I
150 RI=R- 1
16_, F E D I r-1 1, ( L F ,D q L I R ,B I L I: R *K 2
17 PEI'II ll : i ' , .ir- : 2,,G t :K ,
1I'0 FOR i L=.O TO t : 2
190 u tI )U=0.

200 NEXT Ks
210 FOP N-=L TO R
220 1- N F - ' 1,FN ' HE *fl 1 , 1 S EE r EF F t:1 : = ,
2 -:0 NE:T Ns
240 Cl=; , ;
250 Gr=G R)
2,6 0 IF WOO..:0 THEN 320
270 F=. 5G':G 1 +Gr
-80 FOR Ns=L1 TO PI

2'90 F=F+0G,(S)
.:00 NEXT NE

1 l 11 w',,, - 0 = F r, * D

0 FOR t==Ll TO R
c:: l Dg M i =G .,G : ,: I -

40 NEXT Ws
-5 l D 2 =DelU*DE1

:6 c IF L=O THEN 410
370 FOR s_=K1 TO i2
380 1 =L*Ks
-;90 CALL FE E l,1 I-IL,.10, 111'Ks, ABLO, I, I
400 NEXT IL
410 FOP Fs= 1 TO 12
4 '0 I =:F *. L

430 CA LL BEs-el, I Dt 2, JO, M r' I ,,B O,1' I
440 NE:xT F =
450 FOR t-=Ll TOP RI
460 FO I -K1 TO 0
470 1 =1V
4:_:.0 IF B1' I . 0. THEN 500
4'? -1: ALL E,--E E ' Ii'.-, .1 0, J , A ,: O, BI I

500 NEXT iL
510 NE- T N!
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5 20 T=L-tg, L:, -1>1

540 IF L=0 THEN 580
550 FOR V ;s=K1 TO K:'
_, ,:- U Gk k,. ,. ::; o : = T I B I k , - . . - G I i . I I ( :;-

570 NEXT Ls
580 FOR Kz=K 1 T% K2
590 F=T2*BlR*.- -Gr-.Jlr(F:)
6 c f I: . =GU , I: .- F
610 NEXT Ks
"--20 FOR Ns=LI TO Ri
630 F =NH= -*,- D- g . WE + I rig N ' . ,
E40 FOR t: =I TO K2
650 1:,., ,: V;s > =) G w , i.E. +FtI: 1 "ti-I sI
660 NEXT K;s
670 NEXT Ns
680 FOR KKlI TO :12
690. Gn K . '.Ks*De I,,

NEXT IK
10 PRINT G',' *)

728 PAUSE

730 END

i50 DEF FN(X) g' X)
i.. :- tE P ,- , Y' RLE I GH E::-F FPLE
77U F'ETUR u!

78( FNENID
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10 ' 2EP'Di-TH ORDER BESSEL TRAtSFORM US ING LIHEAR IHNTERFOLATIOCiN.
I20 INTEF]R:AL . :I d: JoI.'::'X< g-'.x FOR W 1 .:W=.= 2 IS STORED IN

3E I i'U _2, '4fr N = Ks- D 1 ., S. l er I o,-a.t orE g E .

40 Del =. 025 I INCREMENT 'h IN A

50 LC X 1 =L*De1 I, L./=O
R=400 Xr=R*D-,I x R.-L

70 De',.I ,5 INCRE MENT '6 IN w
W:1=0 1 KI*Dei, F I>=0

90 F:2= 100 W 2=K2*Dl , 2 1
100 DOUBLE L. , 1 2, [.C, L I, Ri, N1 , [ INTEGERS
110 DIM . - 500) , Dg,, 5.00 , G ,200 ,

1320 Li =rii 11

140 LI=L+I
150 Ri=R- 1
10 REDI1M 1:, L R,, 1g Li :I R G, u :. 1 0: [2)
120 FOR K U=KO TO K2
130 ',,,: Fs - '- .

190 NEY:T Fs
200 FOR tl=L TO P
210 .Z(.N F t.FNI G' t 1.De1 .:, SEE DEF FN,"K:) = ,:':,
.221 NE::KT H
:'3 G I=G. L

_A C Or C0:. RF
i5 IF K.O >0 THEH 310

k60c F= -. G I + Gr.

0 FOR Na=L1 TO R 1

28 F=F+ :: (N 2s
90 NE XT NS

500 U k. O =FDe I:
310 FOR Nz=L1 TO R
320 rg-: N_.)=GK..;.-G> Na-i )
330 NE:KT Ns
:40 2 O lJD l

-50 TI=L*Dg(LI '-GI
T2=R*Dg. R':,-Or

_70 IF L=O THEN 430
0 T:=L*112

390 FOR KF.=kl TO .2

400 CALL Be -se ' T*F +., J, J 1, , , 1
410 Gk(F)=T*B1-GI*j1
420 NEXT K;
430 T=R*D2
440 FOR F T=K1 TO f[

450 CALL B ,F-. I , JT,.J,A,BO,BI
460 F=T2*B-Gr-Ji
470 Gw'. 1 =Ou(.1 s.)-F
4;50 NE'T F: ' ,
490 FOR NH=L1 TO RI
500 F=I-*,:DgKI~a+I-DgNI-.,

510 T=N;*D2
520 FO P = 1 TO V.2
530 C-ALL E:.e- T , -, 0,31 ,A, B0, B1
540 w G L.=GuF '+F-BI
550 HEX T I I

5N tE>, T N-

570 FOP F z = 1 TO F.2

5=0 , F '= ., , F :*De I,'
590 NEXT I £

v--.0U FR I NT 1u *
6 10 END

B-B
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APPENDIX C

DERIVATION OF INIEGRATION RULE FOR PARABOLIC FITS 10 g(x)

The situation of interest here is depicted in figure 2, where parabolas

are fit to the samples of g(x), a pair of adjacent panels at a time. The

derivation of the resultant approximation to integral (27) is broken down

into the four cases illustrated in that figure.

It is again presumed, as in (20), that sample points of g(x) are taken

at increment h, namely

Xn = nh for I < n < r , (C-1)

and that, in addition,

r -J is even (C-2)

That is, the total number of panels employed in interval X,x r must be

even. A breakdown of all the sample points IXn1 into the four categories

of figure 2 is depicted in figure C-i, where we have used the abbreviations

L M A M A M A M A M R

panel panel Xr
pair pair

ligure C-1. Categori/ation of Sample Points

C -1
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M = mid-point (of a panel pair),

A = abutting point (between two panel pairs),

L = left-end point,

R = right-end point. (C-3)

It is presumed in the following that () > 0; the case for w = 0 is given by

(29), while w < 0 is immediately covered by observing that J0 is even.0

Mid-Point

The contribution of a mid-point x to integral (27) is (see figure 2)
n

x 2h

Mn I dx Jo(w) gn (l - y)=

x -h
n

(n+l)e

= 3 dt Jo(t) 6 n , (C 4)
(n-il)e

where we utilized t wx, (C-i), (28), and (22). Upon expansion of the

square in (C-4), and use of (13)-(17), (C-4) reduces to the rather compact

form

C-2
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Mn . t(n - 1) (Bl[(n-l)e] - Bl[(nl)e]) -

(Bo[(n-1)e] - B [(n+l)](C-5)

fhis type of term is yielded for n = + 1, R+ 3, ... , r -3, r 1, as

reference to figure C-1 will verify. Here, and in the following, for the

sake of brevity, we do not document the rather detailed machinations that

lead to the compact form (C-5) from the integral definition (C-4). The

reader will have to reconstruct those nonprofitable manipulations, if

interested.

At this juncture, instead of treating an abutting point with its

associated 4 panels (see upper right of figure 2), we split it up into a

panel pair with a left-end point and another panel pair with a right-end

point. We thus have to consider a general left point and a general right

point.

I FI POINI

lhis case is obtained by looking at the bottom-left diagram in figure 2

and replacing A by n everywhere. The contribution of this type of panel

pair is

C-3
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x n f2h

L ndx 0 (cJx) gn (1 -y) (1 - y/2)

x
n

(n+2)0

no

-J~nl)(+-2(B,(n+)0]- B, [no]) -

1 - (Bo[un+2)e - Bo[ne]) - 2 J,[ne]J (C-6)

This type of term is yielded for n t)~ + 2, .. ,r -4, r - 2, but not

n =r; see figure C-i.

RIGHT POINI

This case perta ins for the bottom-right diagram in figure 2 when r is

replaced by n everywhere. The corresponding contribution to integral (21) is

xn

R n C dx J 0((X) gn (1 * y) (I + y/2)

x n -2h

no

(n -2)8

, {(n-l)(n-2)(B1ln@] - B,[(n-2)0])-

1 (B0[nel - 80[(n-2)0]) +- 2 J (no]) (C--I)

C -4
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lhis type of term is yielded for n + 2, ; + 4, .... r - 2, r, but not

n ; see figure C-1.

ABUIIING POINI

We can now immediately obtain the integral contribution for an abutting

point (top-right diagram of figure 2) by adding (C-6) and (C-7):

An = Ln + Rn =

: (n4-l)(n+-2) 8,[(n+2)e ] - - Bo[(n42)e] 6n gl[ne] -2w 2o

- (r.-I)(n-2) Bl[(n-2)) + -i B [(n-2)E7, (C-B)
2 0

which holds only for n - + 2, .+- 4, ... , r - 4, r - 2; see figure C-l.

As a notational shortcut, we say n + (- 2)(2)[r - 2) are the allowed

values of n.

At this stage, we have succeeded in evaluating all the types of terms

that have been depicted in figure,. 2 and C-l. The total approximation to

integral (27) is therefore

r-I r-2

G(w) Mn + : An + + Rr (C-9)
n=+ n= r

in terms of the contributions in (C-5)-(C-8), where the slash on the

summation symbol denotes skipping every other term.

C-5
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However, this grouping of terms in (C-9) is according to sample values

gn = g(nh) of function g(x). It is advantageous to re-arrange this sum,

grouping terms instead according to sample values of functions B (u) and

BI(u), defined in (16) and (17). After considerable manipulations, the

following alternative to (C-9) is obtained:

2w G(w) -i S Bo() ) - Q Bl ) - 2$ 31l(R)-

-~, £ Sr B(rO) + Q B,(rO) + 2 Jl(re) +

r-2 -2

+ -1 Bo ( ne) - Rn Bl(nO) (C-10)
n=A+2 n--+2

'he auxiliary sequences utilized in (C-IO) are defined below:

=g2 - 2g~ +1 , g

Sr gr - 2gr-1 + gr-2

Q-- l1g2IA - 2A + 2) 9+ * (+ + 2)(+I l)g

Qr r (r - 2)(r - l)g - 2r(r - 2)gr 1  + r(r - l)g 2  (C-l)

and

Dn = gn+2 n2g nl 2gn-l - gn-2

F = 4g 6bg -4g 4-gfor n -n -n+2 n+l + n n-b + gn-2 (+ * 2)(2)(r 2) (C-i?)

Rn = 
n2 D 

+ nF n

C-6
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It is important to observe from (C-1O) that the Bessel integrals B o(u)

and B1 (u) need be evaluated only at u - ne for n =A(2)r, and need not be

evaluated at the in-between points n = (P + l)(2)(r - 1). Of course, the

input function g(x) must be evaluated at all x = x n nh for n =1(1)r.n

ihe quantities in (C-i) and (C-12) do not depend on e - wh, and can be

computed just once and stored, in preparation for use in (C-1O).

If we are interested in evaluating integral G(w) in (27) at values of

equal to integer multiples k of some increment A, then we must substitute

= kA and () = h= kAh (C-13)

into (C-1O). Then interest centers on computation of 0 (u) and Bl(u) at

u z mAh for certain integers m. This consideration has been discussed in

Ihe sequel to (26).

B[HAVIOR FOR SMAIl o

When 0 is small, differences of functions with similar values are

required in (C-1O). lhis same behavior obtainsfor Filon's method; see

15; (25.4.53)]. Accordingly, it is useful to have a series expansion

for G(w) about E3 0, to be used for small 0.

Since [5; (9.1.12)]

io(U) - 1 u 2 as u 0 , (C-14)
0 4

C -7
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substitution in (C-4), along with the change of variable y r t/e - n, yields

the mid-point contribution

1

Mn q n h dy Jo(e(nfy)) (I -y)

-l

g h dy - e2 (n+y)] (1 - y2 ) =

-1

3 gn h I - 41 n 5)1 as 8 4 0 (C-15)

A similar procedure for left point and right point contributions (C-6) and

IC-7) gives

Rn - 3 gn h f - 0(n as -0 (C-16)

The total asymptotic contribution to G(w) in (21) is therefore given by

(a modified version of (C-9))

r-2 r r-l

G - z L Rn + E Mn  as 0 4 0 (C-1l)

n=Z n=1+2 n7-.t+l

using (C-15) and (C-16). For e 0 0, this reduces to Simpson's rule, (29).

4 b
Additional correction terms involving e , e could be derived by using

additional terms in expansion (C-14).

When w is specialized to values w - kA in (C-l0), the result is as given

in (36). Programs for both a faster high-storage procedure and a slower

low-storage procedure are listed below.

C-8
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1 :EPO-TH CPDEP I:E:-EL TPHF:.PF-P M IY:.ING FRHPFIB'LIC IhrEP'FCOLRTION.
20 INTEGF L,:: ,ir , 1' ' ,M ' gJ W FOP' WI =. =L2 I'S '-TORED IN
30 ,., ., ,here = .-. i4e 1D. F t ci" hi gh- -- t h r -De.

40 Del .03 1 NC-REMENT h IH ,
50 L= 0 M =L*-DE, L =0

I::r.=.De , R'-L MUS-;T BE EVEN : > 4
70 De1I.I. IWNCPEENT (x' IN N
-: P. I=0 = 1 K 1 *De 1w, , I l =0

90 % =40 1112K D 1, F12:[ 1
100 DOUBLE L,,F I1f.2.,LIL2P1 ,R, HI., I INTEGEP
110 DIM' G." 801.' ,ua,, '5U ',:qK50o '.J! ' 500.,,.Jir,:'500

120 DIM- B2, 20000. ,,E:1 20000)
130 Ki=F. i
140 1=. I HL 1 - K I , 1
15C L1=L+I
160 L2=Lt2
170 R I =F'- I
120 R2=:-2
1'90 P EDIH 0 ,..L::,,,, OA0:Y2,,.-.:lV:1 :):.2,31 :E 1:[.2 ,Jlr'Fl9t2.:,

2 0 IRE 1111 E: 0, L+ l. I P f.2 E:,1. L K I: * . 2.
Ii 1FOIR Ks=tO TO 1. 2

' W E::T I
4" FOR N .=L TO R

2..7 G. - =FH f N- -D :.1.:, I 'SEE DEF FiG, :: = .:

2 l W E T Na,

" ili .>. L r

2l IF F:O<aO THEN j
51 -- = '-2=0.

310 FOR H-=L1 TO F-1 STEP 2
7.0 S I =S 1 +G.:H'-

-I NE.'T Na
4f FOR Na-=L2 TO- FR2 STEP 2

350 ': ':2 + '.,:. tH.a.

:g WNT NHS.
Oi? G,jO=,Li+O~r+4.-.1+2.*S-2,+De1 3-.

;- 11=0'' L I
390' 0 12=i0x:t L2.

400 r lG...P
410 Ir 2=Ut( .2'
420 '1 =G12-2.01,1+1

4 -r-r -2. *Gr l+GrZ

440 fI =LL 1 *+12-2. LL2-,ll +L±2L I C01

450 +'r=P'2tF 1 ,i 4 U 2. PP'tF2Gr 1 -F' +Fl I r 2
460 01l2=0'1l*2.

470 Gr 2=Gr*.
4:30 D2=DC 1 inL I::

490 FOP F _= I TO 1 2
5, o F=f -.,- rt-,

510 '. ' F-F

520 NE>.T £
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5_:0 IF L=O THEN 580
540 FOP KS= I TO 2
5 50 I=L* Ks

560 CALL Be-. :I~ 1*2, JO, 311 :,, IO' I , : T

570 HEXT f-.
5-0 FOP Fs=i I TO I2
5'90 I=PFK

600 CARLL B E--l ID2, 30, JI .r's,,0' I 'B 1 '
610 HE T K-
20 FOR H-'=L2 TI: P'2 STEP 2

t30 FOR .-==Kl TO F2
640 =H -*Ks
650 IF E: - 1 .0. THEH 670

66 CALL E.E E l , *D2, J0,JI,AF,B I:.,-1 I ' I I
670 HEX T K.-
,- .-: HE T Ns

6 9 c IF L=O THEH 740
700 FOR k ZF 1 TO K2
710 I=Lfo

l - i(K .*Sl±B I-C B:1.I i,-Il+ .J I l. I .. ,

730 NEXT Ks
740 FOR K==1 TO i2
750 IRK

760 F '=7 E: -CtBj' I .:-QrtB:1 I -r2 1 J r : K-
770 1.tF '-G' F -'-F
730 tE T K
790 FOR Ns=L2 TO R2 STEP 2
600 02:GK.(H+2

',:310 01=0> (Ns+1I
10 +G(Hs-1

830 H2=G.ANs-2'

840 Dr,=G2-2. *il1 +2. *H l-H2
-50 Fn= 2-4. 1 1 +6. G:..,- N a.-4 +H I +H2

0 r = -. * ( N.* D r + F n:
:370 FOR -[1 TO [.2

0 I=H *K

S'90 ,F '.= ': IG + :s *Dr,*E '.I'-Fr,*B:!' I
900 IIE'T: T
910 HE T Hs
92 0 F = D El *w2.

930 FOR F I TO K2
940 Gu -. ': sF G - ,KS*F)
950 HEV>'T Ks
960 FP I NT Gw , *
970 PRUS-E

980 EHD
990

1000 DEF Flil>' g.X,
10 0 =1"E:..1P '-.5E P,. ' PAYLEIGH E::AHF LE
1020 RETUPHI O>

1030 FHEIID

C-1O



TR 8027

10 Z EFi -TH PDER I:EE -,EL TPFI-F Ri i-H U:-IH .r PIFPA'. LIC IHTEPP'LHTIuon.
•'0 I IMTEGPiL :., r. d": J.>WX) g,:, FuS WIK=W..= 2 I, .TO I' IN
]':0 ! l.l * . ' h l rI E N = ' i r e-1 Iui 1 0 t,., r" ]c..-=t:r ace .

40 Del.:.03 INCREMEMT ,., IN
50 L=O V1 L *re DE , L.:

PO P: 0 0 '...,': - e1 . P--L MU"T BE EVEN : 4
70 DeIiu=1. I T NCREMENT I., HM W
.0 W =K W IK*De-I u, i -=O
.u V2=120 42=K2*D, 1 ;,[2.=, 1

100 DOUBLE L, R, K i [2, C, L I, L2, P 1 P2, t M, s . ItTEGEPE.
110 D Io r in 'I: 0 .,, g,, 5., 0 . ,, ' ..500

120 KO=[1
1 30 71 =r0iAX,; [1,1

140 L1=L+1
150 L2=L+'
160 R1=R-I
170 R2=R-2
1:30 RET Im G ,.L:P ',G 0:K2 q,'.- KI:K
I 'j FOR K=KO TO V2

G'(Ko )=0.
20 NEXT is

U FOR NS=L TO R
G., H =... FtI G t I .D . SEE DEF FM>,::.:, =

40 NEXT N
50 C;l =G.- L)
60 Gr=G .R

70 IF KO0 THEN 360
0 1=S2=0.
0 FOP Ns=L1 TO P1 STEP 2

-: S11=:, +G×(MtI

lt0 NET Ns
:, BFOP NsL2 TO 2 STEP 2
33(1 .': =S + G; .Ns,

4 1 M5 EX T th:
40A1(.rl) :G1+1r+4.rE;1+2. *2.:*te 1 +3.

-',,J -:.0 I G l . +L 1 4

:70 Cl2=GxL2)

30 r 1 G.

390 r . G .2 P 2 1
400 1 a 12-2.*GI11+G1

410 A=ir- 2. *Gr I +Gr2
420 I:LrL1 *G 1 .-2.L*L2"'-II1+L-*LIl

4-C.0 Or =P2*F 1 *I - *F:PR2*Gr 1 +R*P 1 Gr 2
440 G12=G*2
450 Or 2Gr*2

460 D2=De I u-Dte i
470 FOR Vs=I TO V.2
480 F=K V-;i2
490 Sq4 I,.. FtF,
500 tEXT I

c-11i
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510 IF L=O THEN 570

520 T=L*D2
5:30 FOR K.s=K1 TU K2

540 CALL Be T*K , O,J , A, BI,BI)

5If L,.' VS - =S,:(K - '-1 GBO-Q1 *B 1 -G 12*J I

560 N4E.:,T K-
570 T=R*DI
5:38 FOR Ks=K1 TO 12
5 ,9' CALL Bes -,l T +- , JC, J I , F , :O,B1)

600 F (c K r *-;r*EU-Cr*B I -Gr2* j I

t10 G ' '- C w K =G' . s- F

NE:'T Ks

6,30 FOR N s=L2 TO STEP 2
6491 G2=L.. (Nstt)
t, 450 G1 G.( Ns+ 1)

660 HI G (US-I)

670 H2=G ( Ns-2
680 DnG2-2. *GI+2. HI -H2
690 Fn=G2-4. G 1 +6. G N )4. *HI +H2

700 Rr=Ns* tNS*Dr,+Fr)
710 T=N. *D2
720 FOR Ks=K1 TO K2
730 CALL e i e.T*F-,JO,.A.i,,B0,BPI

740 J.' ' =t,(K ) - Sc'(K5. )*Dn*BO-Rr,
* B 1

750 NEXT Ks

60 NEXT Ns
770 F=DElu*2.
"so FOR Ks=Kl TO V*2

'90 Gw( Kst=Gw(Ks) Ks*F )
800 NEXT Ks

10 PRINT Gu*.)
,',20 PAUSE

30 EtND
840 t

850 DEF F N G ()

860 G-=X*EXP -. 5*XX) RAYLEIGH EXAMPLE

d70 RETURN G×

880 FNEND

C-12
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P3 (x) lhird-order polynomial of x, (1)

c',n,y,1  Polynomial coefficients, (1)

xo  Starting value of x, (2)

A Increment in x, (2)

Q3 (n) Third-order polynomial of n, (3)

a,b,c,d Polynomial coefficients, (3),(4)

Q2,QI Difference polynomials, (5),(6)

P3 (x) Exponential of third-order polynomial, (10)

Q3(n) Exponential of third-order polynomial, (11)

ii



TR 7995

EFFICIENT EVALUATION OF POLYNOMIALS AND EXPONENTIALS

OF POLYNOMIALS FOR EQUI-SPACED ARGUMENTS

INTRODUCI ON

The evaluation of polynomials at equi-spaced arguments is a recurring

tdsk that arises in many applications. When a k-th order polynomial is

written in nested form, its evaluation generally requires k additions and k

multiplications at each argument of interest. For a set of equi-spaced

arguments, we will demonstrate that the multiplications can be entirely

circumvented (except during initialization) and that a recursive procedure

employing only k additions per stage will suffice to generate the sequence

of polynomial values.

For an exponential of a polynomial, an even greater savings is possible;

namely, the exponential can be circumvented (except during initialization),

and only k multiplications per stage are required in a recursive procedure.

Memory storage is also kept at a minimum.

1/2
Reverse Blank
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EVALUAJ1ON OF POLYNOMIAL

lhe procedure is best introduced by way of example. Suppose we want to

evaluate third-order polynomial

2 3
P3(x) -- a + x f- yx + Vx (1)

at the set of equi-spaced arguments

x r x + nA for n = 0, 1, 2, (2)n o

ihat is, we are interested in the values

2 3

Q3 (n) P3 (xn) D a i- bn - cn + dn for n 0, 1, 2, ... , (3)

where

2 3
a = t X - yX O  pX

0 0 0'

b --A(16 2yx o  + 3,jx o 2

c A2 (y + 3Vx 0 )

3
d ;A p. (4)

lo this aim, define difference

2
Q2(n) Q3(n) Q3 (n-l) b c + d +(2c - 3d)n 4- 3dn (5)

Also define

Q (n) Q 2 (n) Q 2 (n-l) r 2c - 6d + 6dn , (6)

3
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and observe that

Ql(n) Ql(n-l) = 6d (7)

lhese last three recursions together read as

Ql(n) = Ql(n-l) + 6d

Q2(n) = Q2(n-l) + QI(n) I for n n 1, 2, , (8)

Q3(n) = Q3(n-l) + Q2(n) J

and require only 3 additio,,s for each n, with no multiplications whatsoever.

The starting values for recursion (8) follow immediately from (6), (5), and

(3), respectively:

Ql(0) = 2c - 6d

Q2(0) = b - c + d, (9)

Q3 (O) = a

Extension to a k-th order p'lynomial is obvious, and requires k

additions per stage, with no multiplications.

4
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EVAIJAlION OF EXPONEN1IAL OF POLYNOMIAL

Suppose we want to evaluate the exponential of a third-order polynomial,

namely

2 31(0
P3 (x) = exp[a i- Bx +- yx + PX 3 (10)

at the arguments listed in (2). That is, we want the values

2 n3]
Q3 (n) E P3 (xn) , exp[a + bn 4- cn + dn ] for n 0, 1, 2 ... . (11)

where a,b,c,d are given in (4).

To accomplish this goal, define ratio

Q2 (n) r Q3 (n)/Q 3 (n-l) = exp[b - c + d +(2c - 3d)n + 3dn 2  (12)

Also define

Q1 (n) Q2 (n)/Q 2 (n - 1) - exp[2c - 6d + 6dn] , (13)

and observe that

QI(n)/QI(n - 1) - exp[6d] (14)

lhese last three recursions together read as

QOI(n) = QlI(n 1 ) exp[6d] 1

Q2(n) Q2(n 1) QI(n) for n = 1, 2, (15)

Q3 (n) Q Q3 (n - 1) Q2 (n)

5
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and require enly 3 multiplications for each n, with 
no additions or

exponentiations. The starting values for recursion 115) follow immediately

from (13), (12), and (11), respectively:

QI(O) = exp[2c - 6d] ,

Q2 ( 0 ) = exp[b - c + d) , 
(16)

Q3 (O) = exp[a]

Initialization requires the evaluation of four exponentials.

Extension to an exponential of a k-th order polynomial is obvious, and

requires k multiplications per stage. Initialization requires the

evaluation of k + 1 exponentials.

6
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CONCLUSION

All the results above apply to complex coefficients a,b,c,d as well as

complex arguments x ,A. Only integer n needs to be real. However, since

a complex multiplication involves 4 real multiplications and 2 real

additions, the time of execution will naturally be larger.

lhe applicability of the above results to linear frequency-modulation

with Gaussian amplitude-modulation follows readily, by restricting the order

of the polynomial in (10) and (11) to k = 2; i.e., set N d = 0. This

particular case has been treated in [1]; in particular, the accuracy of the

procedure has been investigated and found adequate for most applications.

lhe evaluation of cosines or sines of real polynomials can be achieved by

setting a,b,c,d in (11) to purely imaginary values.

When k equals 2 and a,h,c are complex, the quantities Q1 (n) and

Q2 (n) are complex. Since a complex multiplication involves 4 real

multiplications arid 2 real additions, the number of operations per stage to

rjererate QI(n) and Q2(n) is 8 real multiplications and 4 real

additions. As an example, if a,b,c are purely imaginary, a = ia', b = ib',

* ic', then

Q2(n) 7 exp[i(a' + b'n 
# c'n2)]

= cos[a' + b'n + c'n2] 4 i sin[a' + b'n + c'n ] , (17)

meaning that the cosine and sine are capable of simultaneous generation at

ea(h stage. (Attempts to generate the cosine alone, wlth a lesser number of

operations per stage, have not been successful

• I 7
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There is no need to set aside storage arrays for the recursive

quantities in (8) or (15), if these numbers are used on the fly as they are

generated. Then the computer coding for (8) is simply Q1 r Qi + D6,

Q2 = Q2 + QI, Q3 = Q3 * Q2, while that for (15) is simply Ql QI*E6, Q2

Q2*Ql, Q3 = Q3*Q2, in the order listed. Generally, storage of only k

temporary variables is required for a k-th order polynomial. On the other

hand, if Q3(n) must be stored for later use, the only change in the coding

above is to replace the Q3 lines by Q3(N) Q3(N - 1) * Q2 and Q3(N) 7

Q3(N - l)*Q2, respectively; there is no need to store Ql or Q2 in arrays.

For general values of k, if the product of a rational function with an

exponential of a polynomial must be calculated, it can be broken down into

the evaluation of two polynomials and one exponential, as indicated above.

Then one additional multiplication and division realizes the desired

combination. Extensions to sums and products of such combinations are

obvious. The orders, k, of the numerator and denominator polynomials, as

well as the polynomial inside the exponential, need not be equal, but are

completely arbitrary.

8
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INIRODUCIION

If a source of constant (unknown) strength moves on a known course and

speed past an observing point, the received signal power level is modulated

in a known deterministic manner. However, the absolute received signal

power level may be unknown, and is further obscured by the presence of

additive noise of unknown strength.

ihe mathematical problem of interest here is formulated as follows:

x(t) r m(t) s(t) + n(t) (1)

is observed versus time t in an observation time interval of 1 seconds,

where m(t) is a known deterministic amplitude-modulating function. Real

signal s(t) and real noise n(t) are zero mean stationary independent random

processes with power levels

s 2(t) - S, n 2(t) = N, (2)

both of which are unknown. We wish to estimate the signal power S and

determine the variance of the estimate, including its dependence on

observation time I and modulation m(t).
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The average received power varies with time according to

2 m2(
x(t) m (t) S + N, (3)

as seen by reference to (1) and (2). A sample function x(t), as well as the

modulation m(t), is depicted in figure 1. Ihe common bandwidth of the

assumed low-pass random processes, s(t) and n(t), is W Hz; for good

estimation capability, it will be necessary to have 1W >> 1. (Extension to

the bandpass case should not be difficult, based on the results to be given.)

- /

Figure 1. Sample Function and Modulation

2
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PROM EM SOLUI ION

Definition of Error

We will attempt to fit the instantaneous sample power x 2(t) of a

particular observed member function (1) with a model of the form (3), namely

2
m (t) S -N, (4)

where hypothesized values S and i will be chosen to minimize the error.

Specifically, define instantaneous error

e(t) x(t M - IM2(t) 1 N] for t c 1. (5)

lhen the total integrated squared error over observation time 1 is

1 1

which is quadratic in hypothesized power values S and N.

3
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Minimization of Error

ihe partial derivatives of total error E with respect to and -N are

2E -x m- m

-2 dt rx2(t) ml(t) - (t),TA

Setting both o, these derivatives to zero, the optimal estimates, S and N,

of the unknown powers, S and N, are solutions of the two simultaneous linear

equat ions

A

S M4 + N M2 = X2 ,

S M2 + N 1 X0, (8)

wh ere

Mk4f dt mk(t)

4k_ tm~)x() 9
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Optimal _Estimates

lhe solutions of linear equations (8) are

A X2 M2  X
2 2 o

T M4  M 2

A M4 Xo  M2 X2

N . (10)2
1 M4 - M2

It should be observed that if amplitude modulation m(t) is constant over

observation interval 1, then determinant

2
DFl M4 - M (11)

is zero, and (8) can only be solved for the combination Sm + N, according

to

A A 1 C 2
Sm 4 N 1 - dt x(t) for m(t) = m. (12)

lherefore, in order to estimate S separately, it will be required that m(t)

be nonconstant over 1. However, we can anticipate that the stability of the
A

e',timate, S, will be poor for modulations m(t) that are nearly constant over

time 1. lhe only way that D in (Il) can be zero is if m(t) is constant over

I, as may be easily seen from Schwartz's inequality.

A

Inspection of S in (10) reveals that it is inversely proportional to

? A 2
the level of m Also, the product of S and the level of m is
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2proportional to the level of x This is consistent with the observation,

based on (3), that it is only the product of m 2(t) and S that matters, in

so far as the received signal power is concerned. So, without loss of

generality, one could set the maximum value of m(t) equal to 1, if desired;

furthermore, if this convention is adopted, then S is directly the maximum

value (over the observation interval) of the received average signal power

versus time.

Mean-of Siqnal Power Estimate

A

lhe mean of estimate S in (10) is given by

(I: Dl2 MX 0)~ (13)

where we used (11). Now (9) and (3) yield

k -d2
X-k dt mkM x (t)

- dt mk(t) Im2(t) S + N]

1

- k+2 S + Mk N. (14)

Substitution of this result in (13), and the use of (11), yields

S. (lS)

lhat is, S is an unbiased estimate of the true power level S. (It may be

shown in a similar fashion that N is an unbiased estimate of N; that is

N.)

6
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Variance of Istimate

An alternative form for S in (10) is more useful; by substituting (9)

and (11), there follows

S dt g(t) x2(t), (16)

where

- 1 m2 (t)- M2"j for t e

gW t)=- . (17)

otherwise

q(t) is a deterministic function, dependent solely on m 2(t) and 1.

Integrals without limits are over the range of nonzero integrands.

A
In order to determine the variance of S, we first evaluate the mean

square value:

j2  Jf dt du g(t) g(u) x1(t) x2 (u). (18)

In order to proceed any further, we will assume that x(t) is a

(non stationary) Gaussian random process; this is tantamount to assuming

that s(t) and n(t) in (1) are Gaussian processes. (Ihe results above for

the mean of estimate S do not require this restriction, and apply for

arbiLrary statistics.) lherefore, we have the breakdown

2

x () x(u) xit) xu(u) r 2 x(t) x(u) (19)

7
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Substitution of the first term on the right hand side of (19) into (18)

yields the square of the mean of S. Consequently, the variance of S is

2
Var(S) 7 2 fjdt du g(t) g(u) x(t) x(u) (20)

Consideration of the definition of x(t) in (1) now allows us to express

x(t) x(u) [m(t) s(t) F- n(t)] [m(u) s(u) i- n(u)]

m(t) m(u) Rs(t-u) +- R (t-u),s n

where R and R are the covariances of stationary processes s and n,s n

respectively. Substitution of (21) into (20) yields

Var(s) 2Sfdt du g(t) g(u) [m(t) m(u) R,(t-u) + Rn(tu)j 2

2 -fdt dt g(t) g(t-t) [m(t) m(t--) R s(T) + Rn(T)] 2

2 d" R2 (T) 0 I(r) + 4 %tV R (t) R (,-) 0m(T-) +S gm s n gm

4- 2Sdt- R 2(E) 0 (r), (2S n 9

8
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whore we have defined autocorrelations

0 g(IC) - S dt q( t) g( t-:),

gm( M idt g(t) re(t) g(t-T) re(t-l:),

0 mX(T) J dt g(t) m(t) g(t-t) m 2(t-T). (23)

Approximation to Variance

A
lhe result in (22) for the variance of estimate S is exact, holding for

any 1W product. We will now specialize it to the case where

1W >> 1. (24)

Representative pluts of the various functions in (22) are displayed in

figure 2. ihe covariances decay to zero within a delay 3/W, while the

- - - --------

-T 0.. K ' T

Figure 2. Representative Covariances and Autocorrelations

9
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autocorrelations are more slowly varying, decaying to nearly zero att- 1.

It is presumed that observation time I is approximately matched to the

effective duration of modulation m(t). lhis allows (22) to be simplified to

Var() ' 2sgm(0) dt R2 M)
gqmO s

gm .j s n - q ) n

Alternative Forms for Autocorrelations

In order to simplify the scale factors that appear in (25), and to

relate them back to the modulation m(t) by means of (11), we define some

auxiliary quantities. let the instantaneous power modulation be

m (t) for t r T

a(t) , (26)

0 otherwise

and let

A - fdt a(t) M ,2' (21)

which is the average power-modulation over observation time 1. Define the

"variable component" of m 2(t) a3

m2()- A forv(t) a(t) - A 0 , (28)
{m2(t)o theris:3

and define integral

Vk dt v M dt [at) _ A] k (29)

10
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Ihen determindnt D in (11) becones

) i I M M2  t m 4 (t) dt m2(t
4 -21 f I [f

1 2

- 1fdt a(t) fdt a(t 1 fdt [a(t) A2 1 V2, (30)

whi le (1/) becomes

q(t) - v(t)/V 2 . (31)

that is, q(t) is the ratio of the variable component to its own energy.

Ihen since

m2 (t) a(t) = A + v(t), (32)

we find

0(0) dt g 2(1)

9A V 2
2 2A V 2  V- V3

0 (0) - dt g2(t) m2 M. 2 3
gm (t)

2

0 A2 V 2 - 2 A V3  V V4gm t(0) dt g f(t) mM - . V 2. (33)

2

all in terms of the integrals (29) of the variable component (28) of m 2(t).

11
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Spetra_. Representations

By the use of Parseval's theorem, the three integrals over the

covariances in (25) become

respectively, where GS and Gn are the double-sided power density spectra

of stationary processes s and n. Since the received processes will be

pre-filtered to the band of the signfl, it is reasonable to assume that s

and n have identical spectral shapes. Then the bandwidth W, introduced in

figure 1, can be made quantitative by defining it as the (positive

frequency) effective bandwidth

Idf G fi [fdf GSUI f_ s2

df G2(f) 2 fdf G2(f) 2 fdf G2(f)

This enables us to express the three integrals in (34) as

S2  SN N 2

2 W ' W I 2W

respectively.

12
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Alternative Variance. E xpressions

When we combine (33)-(36) in (25), there results

4 A2 V2 f 2 A V3 f V4  S2

2 3 4
Var(S)'= ---- WV4-

V2

A V2 + V3 SN 1 N2

2 W V2 W
V2

' [V2 (AS f- N)2 +- 2 V3 S (AS ,- N) + V4 S2]. (37)

A more useful result is obtained if we let the dimensionless shape

factor be defined as

lfdt vk(t) Vkl

k r v -- k/2 (38)

arid define a variability factor

'-Jdt [a(t)-- A
2  V2/

2 A

U k depends solely on the variable component of m 2(t), as defined in

2
(28), while r measures the realive siJrength of the variable component.

13
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and the average component, as defined in (27). Then (37) becomes

A~ 1 rr 21_Var(S) S 2W r2 (AS*N) - 2U3 r AS (AS+N)+ U4 r (AS)j. (40)

rAA

A measure of the stability of estimate S is furnished by the quality

rat io

Std Dev(S)"

T-T-' r R
-- 2 (41)

I-R) 2 +- 2U3 r R (I+R) + U4 r 2 R2 / 2

where

R = AS (4?)
n (t)

is the observed signal-to-noise ratio. That is, AS is the mean signal

power, averaged over the observation interval 1. Ihe fact that AS appear

together in quality ratio (41) is consistent with the observations made in

the sequel to (12). lhe result in (,4!) holds only for large 'W; recall the

assumption in (24) et sequel.

large values for the quality ratio are desirable. However, increasing

the bandwidth W will also increase the noise power N proportionately, if

14
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the noise is white, thereby decreasing signal-to--noise ratio R. Increasing

the observation time 1 is beneficial, to a point, depending on the nonzero

extent of modulation m(t); however, since T is involved in U2, U r, A,

the dependence of Q on 1 is very complicated and can only be ascertained

by example, larger variability factors, r, are desirable, but they also

depend on 1; if modulation m(t) is not tinder control, then only 1 can be

varied in an attempt to realize large values of r.

If modulation m(t) is constdnt over 1, then (39) and (41) yield r'O,

QO, respectively. ihis is consistent with the observation in (12) that

the signal puwer can not be separately cstimated in this case.

Small Siqnal-to-Noise Ratio

If R << 1, then (41) reduces to

QO 2!FVlWr R for R<<l, (43)

which is independent of shape factor Uk in (38). However, the

variability factor r in (39) still plays an important role in the size of

the quality factor Q.

15
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EXAMPI L

l et the amplitude modulation m(t) in (1) be given by

m(t) - exp (. 2 for all t. (4i11

I is a measure of the effective extent of the modulation; that is,

m(+ 1I) = exp(-l/2) r .607,

a(+l1l) = M2(tl1) = exp(-l) = .368. (45)

Let observation time I in figure 1 extend over (-1/2, T/2), and define

-1/2

_ " dt exp(-j t2/1).3 - dt 22 -

-T/2

Here, the normal probability integral is

X

(x) - f du (2w)-112 exp(-u /2). (47)

16
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ihe aIcj are functions of the ratio of observation time I to effective

duration 1.

1hen (26), (27), (44), and (46) yield

A = Q1, (48)

while (29) yields

k
1 = ()-A)k-j CE. 

(49)

j=O

in particular, using (48),

V I -

V 2 / O3 2 '2 ,

V /I -(%cz 4 .A 6 C c%4(0

4 4 31 21 1. (50)

]hen (38) and (39) yield

3 2 a, 3
U3  P3

U3  2 3/2

2 2

U4 4_ 3 1  6 2 c 3a 4

U4 . ..... 2 2...

2
2 CL2 C11
r2  (51)
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These quantities all depend on T/l. ; see (46).

We now have all the ingredients necessary to evaluate quality ratio Q

in (41). Since

1
IW 7 1I i1 W'2

we can express a normalized quality ratio as

1/2
S(1 / ) 11 2 r R

0Wl2R)2 + 2U3 r R (1+R) + U4 r
2 R ]1 /2

to accent the fundamental dependence on the ratio T/1 Also, from (42)

and (48),

RA= ~<~~'
N N (54)

giving input signal-to noise ratio S/N as the only other fundamental

parameter. The product I W of effective modulation duration and signal

bandwidth is presumed large compared to 1, and can be chosen to fit the

particular application. A program for the evaluation of (53) is attached

below.

18
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GRAPHICAL RESULIS

lhe normalized quality ratio in (53) is plotted vs 1/1 in figure 3

for several signal--to-noise ratios, S/N. Here,

dB = 10 log(S/N) (55)

is used to label the curves. The curves increase rapidly with 1/1 in

the neighborhood of 2 to 4; however, they all saturate for large 1/11 ,

indicaLing the futility of attempting to observe over an interval where the

signal strength has essentially decayed to zero.

ihe curves are also saturating at an upper bound, as may be seen by

the crowding together near dB values of 20 in figure 3. lhus infinitely

large signal-to-noise ratios result in a finite quality ratio (41), due to

the inherent random character of the random signal process.

19
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Figure 3. Normalized Quality Ratio
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SUMMARY

A technique for estimating the unknown signal power of an

amplitude-modulated signal in the presence of noise has been derived and

evaluated in terms of its mean and variance. The estimate is unbiased,

while the quality ratio depends strongly on the ratio of observation time

to the effective-modulation duration.
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PROGRAM

I0c S 0-;R P I,
10 S5= OR ,5

30 S2=SOR 2. ;
40 S3=SQR ':3. )
50 FOR Db=-10. TO 20. STEP 2.
60 n 10. . 1 * b )' H
70 FOR Tt.l=. 1 TO 10 '-TEP .1 TxTi
-o S I S p, Tt. 1
90 Sq2=.5*Tt 1

100 q 1 *(2. *FNPh ,Sc2)-1. ), FILPHFII
110 R2, ql."2*,2. *FtlPhi ( q2 .2)-1. I
12 4 R3 Sj l /S:3* 2. *FtlPhi'.Sq2" 3 - I 130 M4 '1/2 *':2. *FPh S,:2.)-1.3 RA4 = S.' q I. . ./ 2. Ph 2

140 P=F-i*A
150 F=A2-P
160 S =S"QR.'. F
170 Rs=S q." Ar
1:0 U3:= .3 2* 1 +. *P 1A F:-.:
190 U4=,:. A4-4 1 .*1+6. *2*P-3. *F'*P F*F
00 R:AI*Sn P

210 RI= I .+R
22( F-=R s*R

D.'-=:-:0 D=R1*P+2. UJ:-3*F'tR1+U4*F*P
40 Nqr=P*SQPk Tt 1 ... l)
50 PRINT Db,Tt I,N cr
E0 tNEXT Tt 1

270 PRINT
80 NEXT Db
90 END
00 I

1 0l DEF FNFh ,: :) HART, p,g 140, #5708 8.: #5725
-2 =ABS-'*. 70710678118654746

3:30 SELECT Y
-40 CASE <8.

5 P'= 1631 . 76026875371470+*+ 456. 6 145:-:7060926.31 ,'::ja6. 0,27622119435951 +',*
I, CiE 45.89 7 4 9 09542_,5+ ,*, 564 18958676 18:1 314 )

S-:37 2:3. 507931 554'-0672Y (7113. 66324695404937 +' ': 675::. 2169'-64110435:: +'*

40 -:2 670 108:3004974 +''*P )')
7 =7542 47'951019347576 +,* ( 29 0C4490148230872 +,--', 17. 6223-6:304544077 + Y*

15. 077710750362216 +7,* k. 17.839498439 1395565+))'),)
S0=3723, 50 7 15548065 4+Y. 1 1315. 1920854 + . 15'-02.5:3599'94020425+,*

13,:349. 3465612844574+Y*Q:'. ))
3'90 Phi =. 5*EXP,(-',"*'Yv)*P/Q
400 CASE <26.6
410 P=2. 97886562639:'.99289+Y* (7. 40974060596474179+Y' 6, 16020985 - 1096:3054 +*

5. 01904972678426746+Y*< 1 .2,.75 6r44, 7-5 95 +'*. 5641895:-,::547755074))))
420 : Q :36 9075206'j..2 752 7 + Y* 39 06-965:321 92 7: 7:87 + Y* k. 17 . 0-1440 7 4 7 466 04 3 +'*

':4 12.043-951 9278551290+'* :Z9. :39603401623505415 ,7<':2. 26052;-.;5276732697+7Y. ':I: :,: :

430 PV, 1 .5*EXP , -Y Y ,*P./ 0
440 CASE ELSE

450 Phi=0.
460 END SELECT
470 IF X>O. THEN Phi=l.-Phi
480 RETURN Phi
490 FNEND
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